二次函数压轴题系列精讲一 (ppt版 +精讲+精练)(共42张PPT)

文档属性

名称 二次函数压轴题系列精讲一 (ppt版 +精讲+精练)(共42张PPT)
格式 zip
文件大小 6.2MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2022-01-20 13:47:30

文档简介

中小学教育资源及组卷应用平台
二次函数压轴题系列精讲一
1.(13分)(2020 天水)如图所示,拋物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(﹣2,0),点C的坐标为C(0,6),对称轴为直线x=1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB.
(1)求抛物线的函数表达式;
(2)当△BCD的面积等于△AOC的面积的时,求m的值;
(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.
【分析】(1)由题意得出方程组,解方程组即可;
(2)过点D作DE⊥x轴于E,交BC于G,过点C作CF⊥ED交ED的延长线于F,求出点B的坐标为(4,0),由待定系数法求出直线BC的函数表达式为yx+6,则点D的坐标为(m,m2m+6),点G的坐标为(m,m+6),求出S△BCDm2+6m,解方程即可;
(3)求出点D的坐标为(3,),分三种情况,①当DB为对角线时,证出DN∥x轴,则点D与点N关于直线x=1对称,得出N(﹣1,)求出BM=4,即可得出答案;
②当DM为对角线时,由①得N(﹣1,),DN=4,由平行四边形的性质得出DN=BM=4,进而得出答案;
③当DN为对角线时,点D与点N的纵坐标相等,N(1,)或N(1,),再分两种情况解答即可.
【解答】解:(1)由题意得:,
解得:,
∴抛物线的函数表达式为:yx2x+6;
(2)过点D作DE⊥x轴于E,交BC于G,过点C作CF⊥ED交ED的延长线于F,如图1所示:
∵点A的坐标为(﹣2,0),点C的坐标为(0,6),
∴OA=2,OC=6,
∴S△AOCOA OC2×6=6,
∴S△BCDS△AOC6,
当y=0时,x2x+6=0,
解得:x1=﹣2,x2=4,
∴点B的坐标为(4,0),
设直线BC的函数表达式为:y=kx+n,
则,
解得:,
∴直线BC的函数表达式为:yx+6,
∵点D的横坐标为m(1<m<4),
∴点D的坐标为:(m,m2m+6),
点G的坐标为:(m,m+6),
∴DGm2m+6﹣(m+6)m2+3m,CF=m,BE=4﹣m,
∴S△BCD=S△CDG+S△BDGDG CFDG BEDG×(CF+BE)(m2+3m)×(m+4﹣m)m2+6m,
∴m2+6m,
解得:m1=1(不合题意舍去),m2=3,
∴m的值为3;
(3)由(2)得:m=3,m2m+6323+6,
∴点D的坐标为:(3,),
分三种情况讨论:
①当DB为对角线时,如图2所示:
∵四边形BNDM是平行四边形,
∴DN∥BM,
∴DN∥x轴,
∴点D与点N关于直线x=1对称,
∴N(﹣1,),
∴DN=3﹣(﹣1)=4,
∴BM=4,
∵B(4,0),
∴M(8,0);
②当DM为对角线时,如图3所示:
由①得:N(﹣1,),DN=4,
∵四边形BNDM是平行四边形,
∴DN=BM=4,
∵B(4,0),
∴M(0,0);
③当DN为对角线时,
∵四边形BNDM是平行四边形,
∴DM=BN,DM∥BN,
∴∠DMB=∠MBN,
∴点D与点N的纵坐标相等,
∵点D(3,),
∴点N的纵坐标为:,
将y代入yx2x+6中,
得:x2x+6,
解得:x1=1,x2=1,
当x=1时,如图4所示:
则N(1,),
分别过点D、N作x轴的垂线,垂足分别为E、Q,
在Rt△DEM和Rt△NQB中,,
∴Rt△DEM≌Rt△NQB(HL),
∴BQ=EM,
∵BQ=143,
∴EM3,
∵E(3,0),
∴M(,0);
当x=1时,如图5所示:
则N(1,),
同理得点M(,0);
综上所述,点M的坐标为(8,0)或(0,0)或(,0)或(,0).
【点评】本题是二次函数综合题目,考查了待定系数法求函数的解析式、坐标与图形性质、平行四边形的性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度.
2.(2021江苏扬州)(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C.
(1)b= ﹣2 ,c= ﹣3 ;
(2)若点D在该二次函数的图象上,且S△ABD=2S△ABC,求点D的坐标;
(3)若点P是该二次函数图象上位于x轴上方的一点,且S△APC=S△APB,直接写出点P的坐标.
【分析】(1)利用待定系数法求解即可;
(2)先求出△ABC的面积,设点D(m,m2﹣2m﹣3),再根据S△ABD=2S△ABC,得到方程求出m值,即可求出点D的坐标;
(3)分点P在点A左侧和点P在点A右侧,结合平行线之间的距离,分别求解.
【解答】解:(1)∵点A和点B在二次函数y=x2+bx+c图象上,
则,解得:,
故答案为:﹣2,﹣3;
(2)连接BC,由题意可得:
A(﹣1,0),B(3,0),C(0,﹣3),y=x2﹣2x﹣3,
∴S△ABC==6,
∵S△ABD=2S△ABC,设点D(m,m2﹣2m﹣3),
∴|yD|=2×6,即×4×|m2﹣2m﹣3|=2×6,
解得:m=或,代入y=x2﹣2x﹣3,
可得:y值都为6,
∴D(,6)或(,6);
(3)设P(n,n2﹣2n﹣3),
∵点P在抛物线位于x轴上方的部分,
∴n<﹣1或n>3,
当点P在点A左侧时,即n<﹣1,
可知点C到AP的距离小于点B到AP的距离,
∴S△APC<S△APB,不成立;
当点P在点B右侧时,即n>3,
∵△APC和△APB都以AP为底,若要面积相等,
则点B和点C到AP的距离相等,即BC∥AP,
设直线BC的解析式为y=kx+p,
则,解得:,
则设直线AP的解析式为y=x+q,将点A(﹣1,0)代入,
则﹣1+q=0,解得:q=1,
则直线AP的解析式为y=x+1,将P(n,n2﹣2n﹣3)代入,
即n2﹣2n﹣3=n+1,
解得:n=4或n=﹣1(舍),
n2﹣2n﹣3=5,
∴点P的坐标为(4,5).
【点评】本题考查了二次函数综合,涉及到待定系数法求函数解析式,三角形面积,平行线之间的距离,一次函数,解题的难点在于将同底的三角形面积转化为点到直线的距离.
3.(2021内蒙赤峰)(14分)如图,抛物线y=﹣x2+bx+c与x轴交于(﹣3,0)、B(1,0)两点,与y轴交于点C,对称轴l与x轴交于点F,直线m∥AC,点E是直线AC上方抛物线上一动点,过点E作EH⊥m,垂足为H,交AC于点G,连接AE、EC、CH、AH.
(1)抛物线的解析式为  y=﹣x2﹣2x+3 ;
(2)当四边形AHCE面积最大时,求点E的坐标;
(3)在(2)的条件下,连接EF,点P是x轴上一动点,在抛物线上是否存在点Q,使得以F、E、P、Q为顶点,以EF为一边的四边形是平行四边形.若存在,请直接写出点Q的坐标;若不存在,说明理
由.
【分析】(1)利用待定系数法构建方程组求出b,c即可.
(2)如图1中,连接OE.设E(m,﹣m2﹣2m+3).由题意AC∥直线m,推出△ACH的面积是定值,因为S四边形AECH=S△AEC+S△ACH,推出当△AEC的面积最大时,四边形AECH的面积最大,构建二次函数,利用二次函数的性质解决问题即可.
(3)如图2中,因为点Q在抛物线上 EF是平行四边形的边,观察图象可知,满足条件的点Q的纵坐标为±,构建方程求解即可.
【解答】解:(1)∵y=﹣x2+bx+c与x轴交于(﹣3,0)、B(1,0),
∴,
解得,
∴抛物线的解析式为y=﹣x2﹣2x+3.
故答案为:y=﹣x2﹣2x+3.
(2)如图1中,连接OE.设E(m,﹣m2﹣2m+3).
∵A(﹣3,0),C(0,3),
∴OA=OC=3,AC=3,
∵AC∥直线m,
∴△ACH的面积是定值,
∵S四边形AECH=S△AEC+S△ACH,
∴当△AEC的面积最大时,四边形AECH的面积最大,
∵S△AEC=S△AEO+S△ECO﹣S△AOC=×3×(﹣m2﹣2m+3)+×3×(﹣m)﹣×3×3=﹣(m+)2+,
∵﹣<0,
∴m=﹣时,△AEC的面积最大,
∴E(﹣,).
(3)如图2中,因为点Q在抛物线上 EF是平行四边形的边,观察图象可知,满足条件的点Q的纵坐标为±,
对于抛物线y=﹣x2﹣2x+3,当y=时,﹣x2﹣2x+3=,解得x=﹣(舍弃)或﹣,
∴Q1(﹣,).
当y=﹣时,﹣x2﹣2x+3=﹣,解得x=,
∴Q2(,﹣),Q3(,﹣).
综上所述,满足条件的点Q坐标为(﹣,)或(,﹣)或(,﹣).
【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,平行四边形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,学会利用参数构建方程解决问题,属于中考常考题型.
4、(2021内蒙通辽)(12分)如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y轴于点C,动点P在抛物线的对称轴上.
(1)求抛物线的解析式;
(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;
(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
【分析】(1)运用待定系数法即可求得答案;
(2)因为BC为定值,所以当PB+PC最小时,△PBC的周长最小,如图1,连接AC交对称轴于点P,由轴对称性质可知,此点P即为所求,再利用勾股定理求出AC、BC,即可得出答案;
(3)设P(1,t),则AC2=32+32=18,AP2=(1﹣3)2+t2=t2+4,PC2=12+(t﹣3)2=t2﹣6t+10,分三种情况进行讨论①当以AP为对角线时,则CP=CA,建立方程求解即可,②以AC为对角线时,则PC=AP,建立方程求解即可,③当以CP为对角线时,则AP=AC,建立方程求解即可.
【解答】解:(1)∵抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,
∴,
解得:,
∴该抛物线的解析式为y=﹣x2+2x+3;
(2)在y=﹣x2+2x+3中,令x=0,得y=3,
∴C(0,3),
∵△PBC的周长为:PB+PC+BC,BC是定值,
∴当PB+PC最小时,△PBC的周长最小.
如图1,点A、B关于对称轴l对称,连接AC交l于点P,则点P为所求的点.
∵AP=BP,
∴△PBC周长的最小值是:PB+PC+BC=AC+BC.
∵A(3,0),B(﹣1,0),C(0,3),
∴AC=3,BC=.
∴△PBC周长的最小值是:3+.
抛物线对称轴为直线x=﹣=1,
设直线AC的解析式为y=kx+c,将A(3,0),C(0,3)代入,得:

解得:,
∴直线AC的解析式为y=﹣x+3,
∴P(1,2);
(3)存在.
设P(1,t),
∵A(3,0),C(0,3),
则AC2=32+32=18,
AP2=(1﹣3)2+t2=t2+4,
PC2=12+(t﹣3)2=t2﹣6t+10,
∵四边形ACPQ是菱形,
∴分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,
①当以AP为对角线时,则CP=CA,如图2,
∴t2﹣6t+10=18,
解得:t=3±,
∴P1(1,3﹣),P2(1,3+),
∴Q1(4,﹣),Q2(4,),
②以AC为对角线时,则PC=AP,如图3,
∴t2﹣6t+10=t2+4,
解得:t=1,
∴P3(1,1),Q3(2,2),
③当以CP为对角线时,则AP=AC,如图4,
∴t2+4=18,
解得:t=±,
∴P4(1,),Q4(﹣2,3+),
P5(1,﹣),Q5(﹣2,3﹣),
综上所述,符合条件的点Q的坐标为:Q1(4,﹣),Q2(4,),Q3(2,2),Q4(﹣2,3+),Q5(﹣2,3﹣).
【点评】本题是二次函数压轴题,考查了二次函数的图象与性质、待定系数法、图形面积计算、轴对称﹣最短路线,菱形性质,点和线段的平移等知识点,熟练掌握二次函数图象和性质,轴对称性质等相关知识是解题关键.
5.(2020甘肃金昌)如图,在平面直角坐标系中,抛物线交轴于两点,交轴于点,且.点是第三象限内抛物线上的一动点.
(1)求此抛物线的表达式;
(2)若,求点的坐标;
(3)连接,求面积的最大值及此时点的坐标.
解:(1)由可得点,即.
∵,∴,.
把两点坐标代入,解得,,
∴抛物线的表达式为.
(2)∵,,∴点的纵坐标为,
∴.解得,(舍).
∴.
(3)设直线的表达式为:
把代入可得,
∴直线的表达式为.
过点作轴的垂线,垂足为,交线段于点;
过点作,为垂足.
设点,则点,
∴.

∴当时,.

故点.
6、(2020齐齐哈尔)综合与探究
在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.
(1)求抛物线解析式;
(2)直线AB的函数解析式为   ,点M的坐标为   ,cos∠ABO=   ;
连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为   ;
(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;
(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
【答案】(1)y=x2+2x;(2)y=x+4,M(-2,-2),cos∠ABO=;(-2,2)或(0,4);(3)点Q(0,-);(4)存在,点N的坐标为(6,6)或(-6,-6)或(-2,6)
【解析】
【分析】
(1)将点A、C的坐标代入抛物线表达式即可求解;
(2)点A(﹣4,0),OB=OA=4,故点B(0,4),即可求出AB的表达式;OP将△AOC的面积分成1:2的两部分,则AP=AC或AC,即可求解;
(3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,即可求解;
(4)分AC是边、AC是对角线两种情况,分别求解即可.
【详解】解:(1)将点A、C的坐标代入抛物线表达式得:,解得,
故抛物线的解析式为:y=x2+2x;
(2)点A(﹣4,0),OB=OA=4,故点B(0,4),
由点A、B的坐标得,直线AB的表达式为:y=x+4;
则∠ABO=45°,故cos∠ABO=;
对于y=x2+2x,函数的对称轴为x=-2,故点M(-2-2);
OP将△AOC的面积分成1:2的两部分,则AP=AC或AC,,
则或,即或,解得:yP=2或4,
故点P(-2,2)或(0,4),
故答案为:y=x+4;(-2-2);;(-2,2)或(0,4);
(3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,
点A′(4,0),
设直线A′M的表达式为:y=kx+b,则,解得,
故直线A′M的表达式为:,
令x=0,则y=,故点Q(0,);
(4)存在,理由如下:
设点N(m,n),而点A、C、O的坐标分别为(﹣4,0)、(2,6)、(0,0),
①当AC边时,
点A向右平移6个单位向上平移6个单位得到点C,同样点O(N)右平移6个单位向上平移6个单位得到点N(O),
即0 ± 6=m,0 ± 6=n,解得:m=n=±6,
故点N(6,6)或(-6,-6);
②当AC是对角线时,
由中点公式得:﹣4+2=m+0,6+0=n+0,
解得:m=-2,n=6,
故点N(-2,6);
综上,点N的坐标为(6,6)或(-6,-6)或(-2,6).
【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质、图形的平移、面积的计算等,其中第4问要注意分类求解,避免遗漏.
7.(2020湖北黄冈)(14分)已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y铀交于点C(0,3).顶点为点D.
(1)求抛物线的解析式;
(2)若过点C的直线交线段AB于点E,且S△ACE:S△CEB=3:5,求直线CE的解析式;
(3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;
(4)已知点H(0,),G(2,0),在抛物线对称轴上找一点F,使HF+AF的值最小.此时,在抛物线上是否存在一点K,使KF+KG的值最小?若存在,求出点K的坐标;若不存在,请说明理由.
【分析】(1)因为抛物线经过A(﹣1,0),B(3,0),可以假设抛物线的解析式为y=a(x+1)(x﹣3),利用待定系数法解决问题即可.
(2)求出点E的坐标即可解决问题.
(3)分点P在x轴的上方或下方,点P的纵坐标为1或﹣1,利用待定系数法求解即可.
(4)如图3中,连接BH交对称轴于F,连接AF,此时AF+FH的值最小.求出直线HB的解析式,可得点F的坐标,设K(x,y),作直线y=,过点K作KM⊥直线y=于M.证明KF=KM,利用垂线段最短解决问题即可.
【解答】解:(1)因为抛物线经过A(﹣1,0),B(3,0),
∴可以假设抛物线的解析式为y=a(x+1)(x﹣3),
把C(0,3)代入,可得a=﹣1,
∴抛物线的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3.
(2)如图1中,连接AC,BC.
∵S△ACE:S△CEB=3:5,
∴AE:EB=3:5,
∵AB=4,
∴AE=4×=,
∴OE=0.5,
设直线CE的解析式为y=kx+b,则有,
解得,
∴直线EC的解析式为y=﹣6x+3.
(3)由题意C(0,3),D(1,4).
当四边形P1Q1CD,四边形P2Q2CD是平行四边形时,点P的纵坐标为1,
当y=1时,﹣x2+2x+3=1,
解得x=1±,
∴P1(1+,1),P2(1﹣,1),
当四边形P3Q3DC,四边形P4Q4DC是平行四边形时,点P的纵坐标为﹣1,
当y=﹣1时,﹣x2+2x+3=﹣1,
解得x=1±,
∴P1(1+,﹣1),P2(1﹣,﹣1),
综上所述,满足条件的点P的坐标为(1+,1)或(1﹣,1)或(1﹣,﹣1)或(1+,﹣1).
(4)如图3中,连接BH交对称轴于F,连接AF,此时AF+FH的值最小.
∵H(0,),B(3,0),
∴直线BH的解析式为y=﹣x+,
∵x=1时,y=,
∴F(1,),
设K(x,y),作直线y=,过点K作KM⊥直线y=于M.
∵KF=,y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴(x﹣1)2=4﹣y,
∴KF===|y﹣|,
∵KM=|y﹣|,
∴KF=KM,
∴KG+KF=KG+KM,
根据垂线段最短可知,当G,K,M共线,且垂直直线y=时,GK+KM的值最小,最小值为,
此时K(2,3).
8、(2020湖南郴州)如图,抛物线与轴交于,与轴交于点.已知直线过两点.
(1)求抛物线和直线的表达式;
(2)点是抛物线上的一个动点,
①如图,若点在第一象限内,连接,交直线于点.设的面积为,的面积为,求的最大值;
②如图2,抛物线的对称轴与轴交于点,过点作,垂足为.点是对称轴上的一个动点,是否存在以点为顶点的四边形是平行四边形
若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1),;(2)①;②存在,点P的坐标为(2,),点Q的坐标为(1,2)或(1,)
【解析】
【分析】
(1)把A(-1,0),B(3,0)代入可求得抛物线表达式,再求得点C的坐标,把B(3,0),C的坐标代入即可求解;
(2)①设点D的坐标为(,),利用待定系数法求得直线PA的表达式为,解方程,求得点P的横坐标为,利用平等线分线段成比例定理求得,得到,利用二次函数的性质即可求解;
②根据等腰直角三角形的性质求得点的坐标为(2,),分当EF为边和EF为对角线时两种情况讨论,即可求解.
【详解】(1)把A(-1,0),B(3,0)代入得:

解得:,
∴抛物线的表达式为,
令,则,
∴点C的坐标为(0,3),
把B(3,0),C(0,3)代入得:

解得:,
∴直线的表达式为;
(2)①∵PA交直线BC于点,
∴设点D的坐标为(,),
设直线PA的表达式为,
∴,
解得:,
∴直线PA的表达式为,
∴,
整理得:,
解得:(不合题意,舍去),
∴点D的横坐标为,点P的横坐标为,
分别过点D、P作x轴的垂线,垂足分别为M、N,如图:
∴DM∥PN,OM=,ON=,OA=1,


∵,
∴当时,分子取得最大值,即有最大值,最大值为;
②存在,理由如下:
作于G,如图,
∵的对称轴为:,
∴OE=1,
∵B(3,0),C(0,3)
∵OC=OB=3,∠OCB=90,
∴△OCB是等腰直角三角形,
∵∠EFB=90,BE=OB-OE=2,
∴△OCB是等腰直角三角形,
∴EG=GB=EG=1,
∴点的坐标为(2,),
当EF为边时,
∵EFPQ为平行四边形,
∴QE=PF,QE∥PF∥轴,
∴点P的横坐标与点F的横坐标同为2,
当时,,
∴点P的坐标为(2,),
∴QE=PF=3-1=2,
点Q的坐标为(1,2);
当EF为对角线时,如图,
∵四边形PEQF平行四边形,
∴QE=PF,QE∥PF∥轴,
同理求得:点P的坐标为(2,),
∴QE=PF=3-1=2,
点Q的坐标为(1,);
综上,点P的坐标为(2,),点Q的坐标为(1,2)或(1,);
【点睛】本题主要考查了一元二次方程的解法,待定系数法求二次函数解析式,等腰直角三角形的判定和性质,平行线公线段成比例定理,等高的三角形的面积的比等于底边的比,二次函数的性质以及平行四边形的对边的判定和性质,(3)注意要分AB是对角线与边两种情况讨论.
9.(2020呼伦贝尔)(13分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(4,0),与y轴交于点C,连接BC,点P是线段BC上的动点(与点B,C不重合),连接AP并延长AP交抛物线于点Q,连接CQ,BQ,设点Q的横坐标为m.
(1)求抛物线的解析式和点C的坐标;
(2)当△BCQ的面积等于2时,求m的值;
(3)在点P运动过程中,是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
【分析】(1)将点A和点B的坐标代入抛物线表达式,求解即可;
(2)连接OQ,得到点Q的坐标,利用S=S△OCQ+S△OBQ﹣S△OBC得出△BCQ的面积,再令S=2,即可解出m的值;
(3)证明△APC∽△QPH,根据相似三角形的判定与性质,可得 ,根据三角形的面积,可得QH=,根据二次函数的性质,可得答案.
【解答】解:(1)∵抛物线经过A(﹣1,0),B(4,0),可得:

解得:,
∴抛物线的解析式为:,
令x=0,则y=2,
∴点C的坐标为(0,2);
(2)连接OQ,
∵点Q的横坐标为m,
∴Q(m,),
∴S=S△OCQ+S△OBQ﹣S△OBC
=﹣
=﹣m2+4m,
令S=2,
解得:m=或,
(3)如图,过点Q作QH⊥BC于H,
∵AC=,BC=,AB=5,
满足AC2+BC2=AB2,
∴∠ACB=90°,又∠QHP=90°,∠APC=∠QPH,
∴△APC∽△QPH,
∴,
∵S△BCQ=BC QH=QH,
∴QH=,
∴=,
∴当m=2时,存在最大值.
10、(2020山东菏泽)如图,抛物线与轴相交于,两点,与轴相交于点,,,直线是抛物线的对称轴,在直线右侧的抛物线上有一动点,连接,,,.
(1)求抛物线函数表达式;
(2)若点在轴的下方,当的面积是时,求的面积;
(3)在(2)的条件下,点是轴上一点,点是抛物线上一动点,是否存在点,使得以点,,,为顶点,以为一边的四边形是平行四边形,若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1);(2);(3)存在,或或.
【解析】
【分析】
(1)直接利用待定系数法可求得函数解析式;
(2)先求出函数的对称轴和直线BC的函数表达式,过D作DE⊥OB交OB于点F,交BC于点E,用式子表示出的面积从而求出D的坐标,进一步可得的面积;
(3)根据平行四边形的性质得到,结合对称轴和点D坐标易得点N的坐标.
【详解】解:(1)∵OA=2,OB=4,
∴A(-2,0),B(4,0),
将A(-2,0),B(4,0)代入得:

解得:
∴抛物线的函数表达式为:;
(2)由(1)可得抛物线对称轴l:,,
设直线BC:,
可得:
解得,
∴直线BC的函数表达式为:,
如图1,过D作DE⊥OB交OB于点F,交BC于点E,
设,则,
∴,
由题意可得
整理得
解得(舍去),
∴,



(3)存在
由(1)可得抛物线的对称轴l:,由(2)知,
①如图2
当时,四边形BDNM即为平行四边形,
此时MB=ND=4,点M与点O重合,四边形BDNM即为平行四边形,
∴由对称性可知N点横坐标为-1,将x=-1代入
解得
∴此时,四边形BDNM即为平行四边形.
②如图3
当时,四边形BDMN平行四边形,
过点N做NP⊥x轴,过点D做DF⊥x轴,由题意可得NP=DF
∴此时N点纵坐标为
将y=代入,
得,解得:
∴此时或,四边形BDMN为平行四边形.
综上所述, 或或.
【点睛】本题考查的是二次函数的综合,首先要掌握待定系数法求解析式,其次要添加恰当的辅助线,灵活运用面积公式和平行四边形的判定和性质,应用数形结合的数学思想解题.
11、(2020四川雅安)(13分)已知二次函数y=x2+bx+c(a≠0)的图象与x轴的交于A、B(1,0)两点,与y轴交于点C(0,﹣3),
(1)求二次函数的表达式及A点坐标;
(2)D是二次函数图象上位于第三象限内的点,求点D到直线AC的距离取得最大值时点D的坐标;
(3)M是二次函数图象对称轴上的点,在二次函数图象上是否存在点N.使以M、N、B、O为顶点的四边形是平行四边形?若有,请写出点N的坐标(不写求解过程).
【分析】(1)利用待定系数法解决问题即可.
(2)如图1中连接AD,CD.由题意点D到直线AC的距离取得最大,推出此时△DAC的面积最大.过点D作x轴的垂线交AC于点G,设点D的坐标为(x,x2+2x﹣3),则G(x,﹣x﹣3),推出DG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,利用二次函数的性质求解即可.
(3)分两种情形:OB是平行四边形的边或对角线分别求解即可.
【解答】解:(1)把B(1,0),C(0,﹣3)代入y=x2+bx+c
则有,
解得
∴二次函数的解析式为y=x2+2x﹣3,
令y=0,得到x2+2x﹣3=0,解得x=﹣3或1,
∴A(﹣3,0).
(2)如图1中连接AD,CD.
∵点D到直线AC的距离取得最大,
∴此时△DAC的面积最大
设直线AC解析式为:y=kx+b,
∵A(﹣3,0),C(0,﹣3),
∴,
解得,,
∴直线AC的解析式为y=﹣x﹣3,
过点D作x轴的垂线交AC于点G,设点D的坐标为(x,x2+2x﹣3),
则G(x,﹣x﹣3),
∵点D在第三象限,
∴DG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,
∴S△ACD= DG OA=(﹣x2﹣3x)×3=﹣x2﹣=﹣(x+)2+,
∴当x=﹣时,S最大=,点D(﹣,﹣),
∴点D到直线AC的距离取得最大时,D(﹣,﹣).
(3如图2中,当OB是平行四边形的边时,OB=MN=1,OB∥MN,可得N(﹣2,﹣3)或N′(0,﹣3),
当OB为对角线时,点N″的横坐标为2,
x=2时,y=4+4﹣3=5,
∴N″(2,5).
综上所述,满足条件的点N的坐标为(﹣2,﹣3)或(0,﹣3)或(2,5).
12、(2020四川遂宁)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.
(1)求抛物线的解析式.
(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.
(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
【分析】(1)设抛物线解析式为:y=a(x﹣1)(x﹣3),把点C坐标代入解析式,可求解;
(2)先求出点M,点N坐标,利用待定系数法可求AD解析式,联立方程组可求点D坐标,可求S△ABD=×2×6=6,设点E(m,2m﹣2),分两种情况讨论,利用三角形面积公式可求解;
(3)分两种情况讨论,利用平行四边形的性质可求解.
【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),
∴设抛物线解析式为:y=a(x﹣1)(x﹣3),
∵抛物线y=a(x﹣1)(x﹣3)(a≠0)的图象经过点C(0,6),
∴6=a(0﹣1)(0﹣3),
∴a=2,
∴抛物线解析式为:y=2(x﹣1)(x﹣3)=2x2﹣8x+6;
(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,
∴顶点M的坐标为(2,﹣2),
∵抛物线的顶点M与对称轴l上的点N关于x轴对称,
∴点N(2,2),
设直线AN解析式为:y=kx+b,
由题意可得:,
解得:,
∴直线AN解析式为:y=2x﹣2,
联立方程组得:,
解得:,,
∴点D(4,6),
∴S△ABD=×2×6=6,
设点E(m,2m﹣2),
∵直线BE将△ABD的面积分为1:2两部分,
∴S△ABE=S△ABD=2或S△ABE=S△ABD=4,
∴×2×(2m﹣2)=2或×2×(2m﹣2)=4,
∴m=2或3,
∴点E(2,2)或(3,4);
(3)若AD为平行四边形的边,
∵以A、D、P、Q为顶点的四边形为平行四边形,
∴AD=PQ,
∴xD﹣xA=xP﹣xQ或xD﹣xA=xQ﹣xP,
∴xP=4﹣1+2=5或xP=2﹣4+1=﹣1,
∴点P坐标为(5,16)或(﹣1,16);
若AD为平行四边形的对角线,
∵以A、D、P、Q为顶点的四边形为平行四边形,
∴AD与PQ互相平分,
∴,
∴xP=3,
∴点P坐标为(3,0),
综上所述:当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形.
13、(10分)(2017 岳阳)如图,抛物线y=x2+bx+c经过点B(3,0),C(0,﹣2),直线l:y=﹣x﹣交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合).
(1)求抛物线的解析式;
(2)当点P在直线l下方时,过点P作PM∥x轴交l于点M,PN∥y轴交l于点N,求PM+PN的最大值.
(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.
【考点】HF:二次函数综合题.
【分析】(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c解方程组即可得到结论;
(2)设P(m,m2﹣m﹣2),得到N(m,﹣m﹣),M(﹣m2+2m+2,m2﹣m﹣2),根据二次函数的性质即可得到结论;
(3)求得E(0,﹣),得到CE=,设P(m,m2﹣m﹣2),①以CE为边,根据CE=PF,列方程得到m=1,m=0(舍去),②以CE为对角线,连接PF交CE于G,CG=GE,PG=FG,得到G(0,﹣),设P(m,m2﹣m﹣2),则F(﹣m,m﹣),列方程得到此方程无实数根,于是得到结论.
【解答】解:(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c得,,

∴抛物线的解析式为:y=x2﹣x﹣2;
(2)设P(m,m2﹣m﹣2),
∵PM∥x轴,PN∥y轴,M,N在直线AD上,
∴N(m,﹣m﹣),M(﹣m2+2m+2,m2﹣m﹣2),
∴PM+PN=﹣m2+2m+2﹣m﹣m﹣﹣m2+m+2=﹣m2+m+=﹣(m﹣)2+,21世纪教育网版权所有
∴当m=时,PM+PN的最大值是;
(3)能,
理由:∵y=﹣x﹣交y轴于点E,
∴E(0,﹣),
∴CE=,
设P(m,m2﹣m﹣2),
∵以E,C,P,F为顶点的四边形能否构成平行四边形,
①以CE为边,∴CE∥PF,CE=PF,
∴F(m,﹣m﹣),
∴﹣m﹣﹣m2+m+2=,
∴m=1,m=0(舍去),
②以CE为对角线,连接PF交CE于G,
∴CG=GE,PG=FG,
∴G(0,﹣),
设P(m,m2﹣m﹣2),则F(﹣m,m﹣),
∴×(m2﹣m﹣2+m﹣)=﹣,
∵△<0,
∴此方程无实数根,
综上所述,当m=1时,以E,C,P,F为顶点的四边形能否构成平行四边形.
14、(2021内蒙赤峰)(14分)如图,抛物线y=﹣x2+bx+c与x轴交于(﹣3,0)、B(1,0)两点,与y轴交于点C,对称轴l与x轴交于点F,直线m∥AC,点E是直线AC上方抛物线上一动点,过点E作EH⊥m,垂足为H,交AC于点G,连接AE、EC、CH、AH.
(1)抛物线的解析式为  y=﹣x2﹣2x+3 ;
(2)当四边形AHCE面积最大时,求点E的坐标;
(3)在(2)的条件下,连接EF,点P是x轴上一动点,在抛物线上是否存在点Q,使得以F、E、P、Q为顶点,以EF为一边的四边形是平行四边形.若存在,请直接写出点Q的坐标;若不存在,说明理由.
【分析】(1)利用待定系数法构建方程组求出b,c即可.
(2)如图1中,连接OE.设E(m,﹣m2﹣2m+3).由题意AC∥直线m,推出△ACH的面积是定值,因为S四边形AECH=S△AEC+S△ACH,推出当△AEC的面积最大时,四边形AECH的面积最大,构建二次函数,利用二次函数的性质解决问题即可.
(3)如图2中,因为点Q在抛物线上 EF是平行四边形的边,观察图象可知,满足条件的点Q的纵坐标为±,构建方程求解即可.
【解答】解:(1)∵y=﹣x2+bx+c与x轴交于(﹣3,0)、B(1,0),
∴,
解得,
∴抛物线的解析式为y=﹣x2﹣2x+3.
故答案为:y=﹣x2﹣2x+3.
(2)如图1中,连接OE.设E(m,﹣m2﹣2m+3).
∵A(﹣3,0),C(0,3),
∴OA=OC=3,AC=3,
∵AC∥直线m,
∴△ACH的面积是定值,
∵S四边形AECH=S△AEC+S△ACH,
∴当△AEC的面积最大时,四边形AECH的面积最大,
∵S△AEC=S△AEO+S△ECO﹣S△AOC=×3×(﹣m2﹣2m+3)+×3×(﹣m)﹣×3×3=﹣(m+)2+,
∵﹣<0,
∴m=﹣时,△AEC的面积最大,
∴E(﹣,).
(3)如图2中,因为点Q在抛物线上 EF是平行四边形的边,观察图象可知,满足条件的点Q的纵坐标为±,
对于抛物线y=﹣x2﹣2x+3,当y=时,﹣x2﹣2x+3=,解得x=﹣(舍弃)或﹣,
∴Q1(﹣,).
当y=﹣时,﹣x2﹣2x+3=﹣,解得x=,
∴Q2(,﹣),Q3(,﹣).
综上所述,满足条件的点Q坐标为(﹣,)或(,﹣)或(,﹣).
【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,平行四边形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,学会利用参数构建方程解决问题,属于中考常考题型.
15、(2021湖南湘西州)(16分)如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.
(1)求抛物线的解析式;
(2)连接BC,求直线BC的解析式;
(3)请在抛物线的对称轴上找一点P,使AP+PC的值最小,求点P的坐标,并求出此时AP+PC的最小值;
(4)点M为x轴上一动点,在抛物线上是否存在一点N,使得以A、C、M、N四点为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
【分析】(1)利用待定系数法解决问题即可.
(2)设BC的解析式为y=kx+b把B,C两点坐标代入,转化为方程组解决.
(3)可以连接BC交直线x=于点P,连接PA,此时PA+PC的值最小,最小值为线段BC的长.
(4)观察图象可知,满足条件的点N的纵坐标为4或﹣4,把问题转化为解方程求解即可.
【解答】解:(1)把A(﹣1,0),B(4,0)代入y=ax2+bx+4,得到,
解得,
∴y=﹣x2+3x+4.
(2)设BC的解析式为y=kx+b,
∵B(4,0),C(0,4),
∴,
∴,
∴直线BC的解析式为y=﹣x+4.
(3)如图1中,
由题意A,B关于抛物线的对称轴直线x=对称,
连接BC交直线x=于点P,连接PA,此时PA+PC的值最小,最小值为线段BC的长==4,
此时P(,).
(4)如图2中,存在.
观察图象可知,满足条件的点N的纵坐标为4或﹣4,
对于抛物线y=﹣x2+3x+4,当y=4时,x2﹣3x=0,解得x=0或3,
∴N1(3,4).
当y=﹣4时,x2﹣3x﹣8=0,解得x=,
∴N2(,﹣4),N3(,﹣4),
综上所述,满足条件的点N的坐标为(3,4)或(,﹣4)或(,﹣4).
【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,轴对称最短问题,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会把问题转化为方程解决.
16、(2021牡丹江)(6分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,P为第二象限内抛物线上一点.
(1)求抛物线的解析式,并写出顶点坐标;
(2)如图,连接PB,PO,PC,BC.OP交BC于点D,当S△CPD:S△BPD=1:2时,求出点D的坐标.
【分析】(1)利用待定系数法求函数解析式,然后将函数解析式化为顶点式求其顶点坐标;
(2)利用等高三角形面积之比为底边的比,结合平行线分线段成比例定理求解.
【解答】解:(1)将点A(1,0)和点B(﹣3,0)代入函数解析式,
可得,
解得:,
∴y=﹣x2﹣2x+3,
又∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴抛物线的顶点坐标为(﹣1,4);
(2)如图,过点D作DM⊥y轴,
由y=﹣x2﹣2x+3,当x=0时,y=3,
∴C点坐标为(0,3),
设直线BC的解析式为y=kx+b,将B(﹣3,0),C(0,3)代入,
可得:,
解得:,
∴直线BC的解析式为y=x+3,
∵S△CPD:S△BPD=1:2,
∴,,
又∵DM⊥y轴,
∴DM∥OB,
∴,
∴,
解得:OM=2,
在y=x+3中,当y=2时,x=﹣1,
∴D点坐标为(﹣1,2).
【点评】本题考查的是二次函数知识的综合运用,涉及到一次函数基本知识、平行线分线段成比例定理等相关知识,理解相关性质定理,利用数形结合思想解题是关键.
17、(2021海南)(16分)已知抛物线y=ax2+x+c与x轴交于A、B两点,与y轴交于C点,且点A的坐标为(﹣1,0)、点C的坐标为(0,3).
(1)求该抛物线的函数表达式;
(2)如图1,若该抛物线的顶点为P,求△PBC的面积;
(3)如图2,有两动点D、E在△COB的边上运动,速度均为每秒1个单位长度,它们分别从点C和点B同时出发,点D沿折线COB按C→O→B方向向终点B运动,点E沿线段BC按B→C方向向终点C运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动时间为t秒,请解答下列问题:
①当t为何值时,△BDE的面积等于;
②在点D、E运动过程中,该抛物线上存在点F,使得依次连接AD、DF、FE、EA得到的四边形ADFE是平行四边形,请直接写出所有符合条件的点F的坐标.
【分析】(1)把A、C两点代入抛物线y=ax2+x+c解析式,即可得表达式.
(2)把解析式配方得顶点式,即可得顶点坐标,令y=0,得B点的坐标,连接OP,可求的S△PBC=S△OPC+S△OPB﹣S△OBC,= OC |xp|+ OB |yp|﹣ OB OC,即得结果.
(3))①在△OBC中,BC<OC+OB,当动点E运动到终点C时,另一个动点D也停止运动,由勾股定理得BC=5,当运动时间为t秒时,BE=t,
过点E作EN⊥x轴,垂足为N,根据相似三角形的判定得△BEN∽△BCO,根据相似三角形的性质得,点E的坐标为(4﹣t,t),分两种情形讨论当点D在线段CO上运动时,0<t<3,此时CD=t,点D的坐标为(0,3﹣t),S△BDE=S△BOC﹣S△CDE﹣S△BOD=t2,当S△BDE=时,t2=,解得t=;Ⅱ、如图,当点D在线段OB上运动时,3≤t≤5,BD=7﹣t,∴S△BDE=BD EN=﹣t2+t,当S△BDE=时,t=;
②根据平行四边形ADFE的性质得出坐标.
【解答】解:(1)∵抛物线y=ax2+x+c经过A(﹣1,0),C(0,3)两点,
∴,
解得,
∴该抛物线的函数表达式为y=﹣x2+x+3;
(2)∵抛物线y=﹣x2+x+3=﹣(x﹣)2+,
∴抛物线的顶点P的坐标为(,),
∵y=﹣x2+x+3,令y=0,
解得:x1=﹣1,x2=4,
∴B点的坐标为(4,0),OB=4,
如图,连接OP,
则S△PBC=S△OPC+S△OPB﹣S△OBC,
= OC |xp|+ OB |yp|﹣ OB OC
=×3×+×4×﹣×4×3
=+﹣6
=,
∴△PBC的面积为;
(3)①∵在△OBC中,BC<OC+OB,
∴当动点E运动到终点C时,另一个动点D也停止运动,
∵OC=3,OB=4,
∴在Rt△OBC中,BC==5,
∴0<t≤5,
当运动时间为t秒时,BE=t,
如图,
过点E作EN⊥x轴,垂足为N,
则△BEN∽△BCO,
∴===,
∴BN=t,EN=t,
∴点E的坐标为(4﹣t,t),
下面分两种情形讨论:
Ⅰ、当点D在线段CO上运动时,0<t<3,
此时CD=t,点D的坐标为(0,3﹣t),
∴S△BDE=S△BOC﹣S△CDE﹣S△BOD
=BO CO﹣CD |xE|﹣OB OD
=×4×3﹣×t×(4﹣t)﹣×4×(3﹣t)
=t2,
当S△BDE=时,t2=,
解得t1=﹣(舍去),t2=<3,
∴t=;
Ⅱ、如图,当点D在线段OB上运动时,3≤t≤5,BD=7﹣t,
∴S△BDE=BD EN,
=×(7﹣t)×t
=﹣t2+t,
当S△BDE=时,
﹣t2+t=,
解得t3=,t4=<3,
又∵3≤t≤5,
∴t=,
综上所述,当t=或t=时,S△BDE=;
②当点D在线段OC上,根据平行四边的性质得,F坐标为(,),
当点D在线段OB上,根据平行四边的性质,F坐标为(3,3).
综上所述:F坐标为(,)或(3,3).
【点评】本题考查了抛物线的综合运用,本题涉及到抛物线的求解,抛物线坐标轴求解,勾股定理,二次函数的性质相似三角形的判定与性质,正确运用分类讨论思想是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
二次函数压轴题系列 精讲一
一、 双基目标
1、纵观全国各地区历年的出题动向来看,
二次函数压轴题的出题样式
大致分成三类;
①传统型;②创新型;③双抛物线型相关.
每个大类下边又分若干具体类型.
2、本节学习传统型中——线段问题、面积问题、平行四边形存在性问题
二、能力目标
通过对二次函数压轴题方法的系统剖析,训练.达到强化、深化学生运用初中数学知识、方法、思想、模型等的综合分析、解决问题的能力目标.
1、看课件,复习知识体系和基本方法;
2、学习例题,完成变式练习;
3、完成课后练习,巩固基础,提升能力。
专题一 线段问题
【解题模型简介】
【例1】 如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣ x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.
(1)求抛物线的解析式;
(2)若PE=5EF,求m的值;
(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.
考点: 二次函数综合题.
分析: (1)利用待定系数法求出抛物线的解析式; (2)用含m的代数式分别表示出PE、EF,然后列方程求解; (3)解题关键是识别出四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解.
解答: 解:(1)将点A、B坐标代入抛物线解析式,得: ,解得, ∴抛物线的解析式为:y=﹣x2+4x+5. (2)∵点P的横坐标为m, ∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0). ∴PE=|yP﹣yE|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|, EF=|yE﹣yF|=|(﹣m+3)﹣0|=|﹣m+3|. 由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|m+15| ①若﹣m2+m+2=m+15,整理得:2m2﹣17m+26=0, 解得:m=2或m=; ①若﹣m2+m+2=﹣(m+15),整理得:m2﹣m﹣17=0, 解得:m=或m=. 由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去. ∴m=2或m=. (3)假设存在. 作出示意图如下: ∵点E、E′关于直线PC对称, ∴∠1=∠2,CE=CE′,PE=PE′. ∵PE平行于y轴,∴∠1=∠3, ∴∠2=∠3,∴PE=CE, ∴PE=CE=PE′=CE′,即四边形PECE′是菱形. 由直线CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5. 过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO, ∴,即,解得CE=|m|, ∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2| ∴|﹣m2+m+2|=|m|. ①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣; ②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m=3+或m=3﹣. 由题意,m的取值范围为:﹣1<m<5,故m=3+这个解舍去. 综上所述,存在满足条件的点P,可求得点P坐标为(﹣,),(4,5),(3﹣,2﹣3).
点评: 本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.
【例2】(2017 内蒙古赤峰市)如图,二次函数的图象交轴于两点,交轴于点,点的坐标为,顶点的坐标为.
(1)求二次函数的解析式和直线的解析式;
(2)点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;
(3)在抛物线上是否存在异于的点,使中边上的高为,若存在求出点的坐标;若不存在请说明理由.
【答案】(1)y=﹣x2+2x+3,y=﹣x+3;(2);(3)存在,(﹣1,0)或(4,﹣5).
【解析】
试题分析:(1)可设抛物线解析式为顶点式,由B点坐标可求得抛物线的解析式,则可求得D点坐标,利用待定系数法可求得直线BD解析式;
(2)设出P点坐标,从而可表示出PM的长度,利用二次函数的性质可求得其最大值;
(3)过Q作QG∥y轴,交BD于点G,过Q和QH⊥BD于H,可设出Q点坐标,表示出QG的长度,由条件可证得△DHG为等腰直角三角形,则可得到关于Q点坐标的方程,可求得Q点坐标.
(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,
设Q(x,﹣x2+2x+3),则G(x,﹣x+3),
∴QG=|﹣x2+2x+3﹣(﹣x+3)|=|﹣x2+3x|,
∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,
当△BDQ中BD边上的高为2时,即QH=HG=2,
∴QG=×2=4,∴|﹣x2+3x|=4,
当﹣x2+3x=4时,△=9﹣16<0,方程无实数根,
当﹣x2+3x=﹣4时,解得x=﹣1或x=4,
∴Q(﹣1,0)或(4,﹣5),
综上可知存在满足条件的点Q,其坐标为(﹣1,0)或(4,﹣5).
考点:待定系数法,二次函数的性质,解一元二次方程,一元二次方程根与系数的关系.
【例3】(2021山东烟台)(14分)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.
(1)求抛物线及直线BC的函数表达式;
(2)点F是抛物线对称轴上一点,当FA+FC的值最小时,求出点F的坐标及FA+FC的最小值;
(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.
【分析】(1)用待定系数法即可求解;
(2)点A、B关于抛物线的对称轴对称,设抛物线的对称轴交BC于点F,则点F为所求点,此时,当FA+FC的值最小,进而求解;
(3)①当点Q在点P的左侧时,证明△QME∽△ENP,则=tan∠EPQ=tan∠OCA===,进而求解;②当点Q在点P的右侧时,同理可解.
【解答】解:(1)由点A的坐标知,OA=2,
∵OC=2OA=4,故点C的坐标为(0,4),
将点A、B、C的坐标代入抛物线表达式得:,解得,
故抛物线的表达式为y=﹣x2+x+4;
将点B、C的坐标代入一次函数表达式得:,解得,
故直线BC的表达式为y=﹣x+4;
(2)∵点A、B关于抛物线的对称轴对称,
设抛物线的对称轴交BC于点F,则点F为所求点,此时,当FA+FC的值最小,
理由:由函数的对称性知,AF=BF,
则AF+FC=BF+FC=BC为最小,
当x=1时,y=﹣x+4=3,故点F(1,3),
由点B、C的坐标知,OB=OC=4,
则BC=BO=4,
即点F的坐标为(1,3)、FA+FC的最小值为4;
(3)存在,理由:
设点P的坐标为(m,﹣m2+m+4)、点Q的坐标为(t,﹣t+4),
①当点Q在点P的左侧时,
如图2,过点P、Q分别作x轴的垂线,垂足分别为N、M,
由题意得:∠PEQ=90°,
∴∠PEN+∠QEM=90°,
∵∠EQM+∠QEM=90°,
∴∠PEN=∠EQM,
∴∠QME=∠ENP=90°,
∴△QME∽△ENP,
∴=tan∠EPQ=tan∠OCA===,
则PN=﹣m2+m+4,ME=1﹣t,EN=m﹣1,QM=﹣t+4,
∴==,
解得m=±(舍去负值),
当m=时,﹣m2+m+4=,
故点P的坐标为(,).
②当点Q在点P的右侧时,
分别过点P、Q作抛物线对称轴的垂线,垂足分别为N、M,
则MQ=t﹣1,ME=t﹣4,NE=﹣m2+m+4、PN=m﹣1,
同理可得:△QME∽△ENP,
∴=tan∠PQE=2,
即,
解得m=(舍去负值),
故m=,
故点P的坐标为(,),
故点P的坐标为(,)或(,).
【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
【例4】(2017年山东省东营市)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.
【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;【来源:21·世纪·教育·网】
(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;
(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.
【解答】解:
(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,
∴B(3,0),C(0,),21世纪教育网
∴OB=3,OC=,
∴tan∠BCO==,
∴∠BCO=60°,
∵∠ACB=90°,
∴∠ACO=30°,
∴=tan30°=,即=,解得AO=1,
∴A(﹣1,0);
(2)∵抛物线y=ax2+bx+经过A,B两点,
∴,解得,
∴抛物线解析式为y=﹣x2+x+;
(3)∵MD∥y轴,MH⊥BC,
∴∠MDH=∠BCO=60°,则∠DMH=30°,
∴DH=DM,MH=DM,
∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,
∴当DM有最大值时,其周长有最大值,
∵点M是直线BC上方抛物线上的一点,
∴可设M(t,﹣ t2+t+),则D(t,﹣ t+),
∴DM=﹣t2+t+),则D(t,﹣ t+),
∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,
∴当t=时,DM有最大值,最大值为,
此时DM=×=,
即△DMH周长的最大值为.
【点评】本题为二次函数的综合应用,涉及待定系数法、三角函数的定义、二次函数的性质、方程思想等知识.在(1)中注意函数图象与坐标的交点的求法,在(2)中注意待定系数法的应用,在(3)中找到DH、MH与DM的关系是解题的关键.本题考查知识点较多,综合性较强,难度适中.
 
专题二 面积问题
【解题模型简介】
铅锤法:
1、过动点(M)向x轴作垂线,与两定点
(A,C)连线相交;
2、动点与交点连线即为“公共底”;
3、确定高:两定点横坐标差;
S=公共底×高(两定点横坐标差)/2
【例1】(2017开封二模)如图,已知抛物线y=a(x+1)(x﹣5)与x轴从左至右交于A,B两点,与y轴交于点C(0,5).
(1)求该抛物线的函数解析式;
(2)D是第一象限内抛物线上的一个动点(与点C,B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,CD,直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.
(3)若M为抛物线对称轴上一动点,△MBC为直角三角形,请直接写出点M的坐标.
【考点】HF:二次函数综合题.
【分析】(1)把C点坐标代入y=a(x+1)(x﹣5)中求出a的值即可得到抛物线解析式;
(2)先解方程﹣(x+1)(x﹣5)=0得A(﹣1,0),B(5,0),再利用待定系数法确定直线BC的解析式为y=﹣x+5,设D(x,﹣x2+4x+5),则E(x,﹣x+5),F(x,0),(0<x<5),则DE=﹣x2+5x,EF=﹣x+5,利用三角形的面积公式进行讨论:当DE:EF=2:3时,S△BDE:S△BEF=2:3;当DE:EF=3:2时,S△BDE:S△BEF=3:2,从而可得到关于x的方程,然后解方程求出x就看得到对应的D点坐标;
(3)先确定抛物线的对称轴,如图,设M(2,t),利用两点间的距离公式得到BC2=50,MC2=t2﹣10t+29,MB2=t2+9,利用勾股定理的逆定理分类讨论:当BC2+MC2=MB2时,△BCM为直角三角形,则50+t2﹣10t+29=t2+9;当BC2+MB2=MC2时,△BCM为直角三角形,则50+t2+9=t2﹣10t+29;当MC2+MM2=BC2时,△BCM为直角三角形,则t2﹣10t+29+t2+9=50,然后分别解关于t的方程,从而可得到满足条件的M点坐标.
【解答】解:(1)把C(0,5)代入y=a(x+1)(x﹣5)得﹣5a=5,解得a=﹣1,
所以抛物线解析式为y=﹣(x+1)(x﹣5),【答案】(1)y=﹣x2+4x+5;
(2)能.
当y=0时,﹣(x+1)(x﹣5)=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),
设直线BC的解析式为y=kx+b,
把C(0,5),B(5,0)代入得,解得,
所以直线BC的解析式为y=﹣x+5,
设D(x,﹣x2+4x+5),则E(x,﹣x+5),F(x,0),(0<x<5),
∴DE=﹣x2+4x+5﹣(﹣x+5)=﹣x2+5x,EF=﹣x+5,
当DE:EF=2:3时,S△BDE:S△BEF=2:3,即(﹣x2+5x):(﹣x+5)=2:3,
整理得3x2﹣17x+10=0,解得x1=,x2=5(舍去),此时D点坐标为(,);
当DE:EF=3:2时,S△BDE:S△BEF=3:2,即(﹣x2+5x):(﹣x+5)=3:2,
整理得2x2﹣13x+15=0,解得x1=,x2=5(舍去),此时D点坐标为(,);
(2)综上所述,当点D的坐标为(,)或(,)时,直线BC能否把△BDF分成面积之比为2:3的两部分;
(3)抛物线的对称轴为直线x=2,如图,
设M(2,t),
∵B(5,0),C(0,5),
∴BC2=52+52=50,MC2=22+(t﹣5)2=t2﹣10t+29,MB2=(2﹣5)2+t2=t2+9,
当BC2+MC2=MB2时,△BCM为直角三角形,∠BCM=90°,即50+t2﹣10t+29=t2+9,解得t=7,此时M点的坐标为(2,7);
当BC2+MB2=MC2时,△BCM为直角三角形,∠CBM=90°,即50+t2+9=t2﹣10t+29,解得t=﹣3,此时M点的坐标为(2,﹣3);
当MC2+MM2=BC2时,△BCM为直角三角形,∠CMB=90°,即t2﹣10t+29+t2+9=50,解得t1=6,t2=﹣1,此时M点的坐标为(2,6)或(2,﹣1),
综上所述,满足条件的M点的坐标为(2,7),(2,﹣3),(2,6),(2,﹣1).
【例2】 如图(1)在直角坐标系中,直线y=x+3与x轴相交于点A,与y轴相交于点C,点B在x轴的正半轴上, 抛物线y=-x2-2x+3经过点A,B,C。在直线AC上方的抛物线上,是否存在一点M,使△MAC的面积最大?若存在,请求出点M的坐标;若不存在,请说明理由。
【解析】:作MF⊥x轴交AC与G点,
设M(m,-m2-2m+3),则G(m,m+3).
∵S△MAC=MG×OA/2 且MG=-m2-3m OA=3
∴S△MAC=3(-m2-3m)/2
,,
【例3】(2021山东淄博)(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+ x+(m>0)与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C,连接BC.
(1)若OC=2OA,求抛物线对应的函数表达式;
(2)在(1)的条件下,点P位于直线BC上方的抛物线上,当△PBC面积最大时,求点P的坐标;
(3)设直线y=x+b与抛物线交于B,G两点,问是否存在点E(在抛物线上),点F(在抛物线的对称轴上),使得以B,G,E,F为顶点的四边形成为矩形?若存在,求出点E,F的坐标;若不存在,说明理由.
【分析】(1)由OC=2OA,得C(0,2),代入抛物线y=﹣x2+ x+(m>0)可得m=4,抛物线对应的函数表达式为y=﹣x2+x+2;
(2)过P作PH∥y轴,交BC于H,根据y=﹣x2+x+2,m=4,求出B(4,0),C(0,2),从而直线BC的解析式为y=﹣x+2,设点P的坐标为(m,﹣m2+m+2)(0<m<4),则H(m,﹣m+2),表示PH的长,根据三角形的面积可得S△PBC=﹣(m﹣2)2+4,根据二次函数的最值可得结论;
(3)分BG为边或对角线两种可能讨论,若BG为边,由∠GBF=90°,得∠OBG=∠BFH,即tan∠OBG=tan∠BFH==,解得:t=3或m,得E的坐标为(3,2m﹣6),由平移性质知,此种假设不成立;若BG为对角线,求出BG中点M,由矩形对角线互相平分求出E的横坐标,由解析式得E坐标,再由∠BEG=90°结合斜边中线求出m即可,即得E、F的坐标.
【解答】解:(1)∵A的坐标为(﹣1,0),
∴OA=1,
∵OC=2OA,
∴OC=2,
∴C的坐标为(0,2),
将点C代入抛物线y=﹣x2+ x+(m>0),
得=2,即m=4,
∴抛物线对应的函数表达式为y=﹣x2+x+2;
(2)如图,过P作PH∥y轴,交BC于H,
由(1)知,抛物线对应的函数表达式为y=﹣x2+x+2,m=4,
∴B、C坐标分别为B(4,0)、C(0,2),
设直线BC解析式为y=kx+n,
则,解得,
∴直线BC的解析式为y=﹣x+2,
设点P的坐标为(m,﹣m2+m+2)(0<m<4),则H(m,﹣m+2),
∴PH=﹣m2+m+2﹣(﹣m+2)
=﹣m2+2m
=﹣(m2﹣4m)
=﹣(m﹣2)2+2,
∵S△PBC=S△CPH+S△BPH,
∴S△PBC=PH |xB﹣xC|
=[﹣(m﹣2)2+2]×4
=﹣(m﹣2)2+4,
∴当m=2时,△PBC的面积最大,此时点P(2,3);
(3)存在,理由如下:
∵直线y=x+b与抛物线交于B(m,0),
∴直线BG的解析式为y=x﹣m①,
∵抛物线的表达式为y=﹣x2+ x+②,mm
联立①②解得,或,
∴G的坐标为(﹣2,﹣m﹣1),
∵抛物线y=﹣x2+ x+的对称轴为直线x=,
∴点F的横坐标为,
①若BG为边且E在x轴上方,如图,过点E作EH⊥x轴于H,
设E的坐标为(t,﹣t2+ t+),
∵∠GBF=90°,
∴∠OBG=∠BFH,
∴tan∠OBG=tan∠BFH==,
∴=,
解得:t=3或m,
∴E的坐标为(3,2m﹣6),
由平移性质,
得:B的横坐标向左平移m+2个单位得到G的横坐标,
∵EF∥BG且EF=BG,
∴E横坐标向左平移m+2个单位,
得:到F的横坐标为3+m+3=m+5,
这与点F的横坐标为矛盾,所以此种情况不存在,
②若BG为边且E在x轴下方,
同理可得,E的坐标为(3,2m﹣6),所以此种情况也不存在,
③若BG为对角线,
设BG的中点为M,
由中点坐标公式得,,
∴M的坐标为(,),
∵矩形对角线BG、EF互相平分,
∴M也是EF的中点,
∴E的横坐标为,
∴E的坐标为(,),
∵∠BEG=90°,
∴EM=,
∴=,
整理得:16+(m2+4m+1) =20(m+2) ,
变形得:16+[(m+2) ﹣3]=20(m+2) ,
换元,令t=(m+2) ,
得:t ﹣26t+25=0,
解得:t=1或25,
∴(m+2) =1或25,
∵m>0,
∴m=3,
即E的坐标为(0,),
F的坐标为(1,﹣4),
综上,即E的坐标为(0,),F的坐标为(1,﹣4).
【点评】本题是二次函数综合题,考查了待定系数法、利用二次函数求面积最大值、二次函数的图象与性质、锐角三角函数处理直线垂直、平移性质、矩形性质、直角三角形斜边中线,扎实的计算功底、巧妙换元降次解一元四次方程是关键.
声明【例【】】
【变式训练】(2021广西柳林)(10分)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).
(1)求抛物线的函数解析式;
(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的
坐标;
(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.
【分析】(1)交x轴于A(﹣1,0),B(3,0)两点,设二次函数的交点式y=a(x+1)(x﹣3),代入C(0,﹣)可得解析式.
(2)BE=2OE,P为OB中点,设OE为x,BE=2x,由勾股定理得∴OE=,BE=,过点E作TF平行于OB,根据相似三角形的判定得△ETO∽△OEB,有相似比的性质得出3TE=,解出E的坐标为(,﹣),直线OE的解析式为y=﹣2x,直线OE与抛物线于点D,联立方程得D的坐标.
(3)根据==,设直线BC的解析式为y=kx+b,将B,C两点代入得,直线BC的解析式为y=x﹣,当x=﹣1时,得F坐标为(﹣1,﹣2),设M(x,x2﹣x﹣),MT=﹣(x﹣)2+,根据二次函数的性质得出,MTmax=,即可解出===的最值.
【解答】解:(1)依题意,设y=a(x+1)(x﹣3),
代入C(0,﹣)得:a 1 (﹣3)=﹣,
解得:a=,
∴y=(x﹣1)(x﹣3)=(x﹣1)2﹣2=x2﹣x﹣;
(2)BE=2OE,P为OB中点,
设OE为x,BE=2x,
OE2+BE2=OB2,
x2+4x2=9,
解得:x1=,x2=﹣(舍),
∴OE=,BE=,
过点E作TF平行于OB,
∴△ETO∽△OEB,
∴==,
∴OE2=OB GE,
∴3TE=,
解得:TE=,
∴OT==,
∴E(,﹣),
∴直线OE的解析式为y=﹣2x,
∵OE的延长线交抛物线于点D,
∴,
解得:x1=1,x2=﹣3(舍),
当x=1时,y=﹣2,
∴D(1,﹣2);
(3)如图所示,延长BC于点F,AF∥y轴,过A点作AH⊥BF于点H,作MT∥y轴交BF于点T,过M点作MD⊥BF于点D,
∵AF∥MT,
∴∠AFH=∠MTD,
∵AH⊥BF,MD⊥BF,
∴∠AHF=∠MDT=90°,
∴△AFH∽△MTD,
∴=,
∵S1=NB MD,S2=NB AH,
∴==,
设直线BC的解析式为y=kx+b,将B,C两点代入得,

解得:,
∴直线BC的解析式为y=x﹣,
当x=﹣1时,y= (﹣1)﹣=2,
∴F(﹣1,﹣2),
∴AF=2,
设M(x,x2﹣x﹣),
∴MT=x﹣﹣(x2﹣x﹣)=﹣(x﹣)2+,
∴a=﹣<0,
∴MTmax=,
∴=====.
【点评】本题考查二次函数的应用,涉及到了勾股定理,二次函数的性质,待定系数法,相似三角形的判定与性质,综合性较强,难度系数大,数形结合思想是解本题的关键.
专题三 平行四边形存在性
【例1】在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
【分析】(1)先假设出函数解析式,利用三点法求解函数解析式.
(2)设出M点的坐标,利用S=S△AOM+S△OBM﹣S△AOB即可进行解答;
(3)当OB是平行四边形的边时,表示出PQ的长,再根据平行四边形的对边相等列出方程求解即可;当OB是对角线时,由图可知点A与P应该重合.
【解答】解:(1)设此抛物线的函数解析式为:
y=ax2+bx+c(a≠0),
将A(﹣4,0),B(0,﹣4),C(2,0)三点代入函数解析式得:
解得,
【答案】(1)此函数解析式为:y=;
(2)M点的坐标为:(m,),
m=﹣2时S有最大值S=4.
(2)∵M点的横坐标为m,且点M在这条抛物线上,
∴M点的坐标为:(m,),
∴S=S△AOM+S△OBM﹣S△AOB
=×4×(﹣m2﹣m+4)+×4×(﹣m)﹣×4×4
=﹣m2﹣2m+8﹣2m﹣8
=﹣m2﹣4m,
=﹣(m+2)2+4,
∵﹣4<m<0,
当m=﹣2时,S有最大值为:S=﹣4+8=4.
答:m=﹣2时S有最大值S=4.
(3)设P(x,x2+x﹣4).
当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,
∴Q的横坐标等于P的横坐标,
又∵直线的解析式为y=﹣x,
则Q(x,﹣x).
由PQ=OB,得|﹣x﹣(x2+x﹣4)|=4,
解得x=0,﹣4,﹣2±2.
x=0不合题意,舍去.
如图,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=﹣x得出Q为(4,﹣4).
【答案】Q(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)或(4,﹣4).
【点评】本题考查了三点式求抛物线的方法,以及抛物线的性质和最值的求解方法.
【例2】(2020贵州黔东南)(14分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).
(1)求抛物线的解析式.
(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.
(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.
【分析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;
(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;
(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.
【解答】解:(1)∵抛物线的顶点为(1,﹣4),
∴设抛物线的解析式为y=a(x﹣1)2﹣4,
将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,
∴a=1,
∴抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;
(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,
令y=0,则x2﹣2x﹣3=0,
∴x=﹣1或x=3,
∴B(3,0),A(﹣1,0),
令x=0,则y=﹣3,
∴C(0,﹣3),
∴AC=,
设点E(0,m),则AE=,CE=|m+3|,
∵△ACE是等腰三角形,
∴①当AC=AE时,=,
∴m=3或m=﹣3(点C的纵坐标,舍去),
∴E(3,0),
②当AC=CE时,=|m+3|,
∴m=﹣3±,
∴E(0,﹣3+)或(0,﹣3﹣),
③当AE=CE时,=|m+3|,
∴m=﹣,
∴E(0,﹣),
即满足条件的点E的坐标为(0,3)、(0,﹣3+)、(0,﹣3﹣)、(0,﹣);
(3)如图,存在,∵D(1,﹣4),
∴将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,
∴点Q的纵坐标为4,
设Q(t,4),
将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,
∴t=1+2或t=1﹣2,
∴Q(1+2,4)或(1﹣2,4),
分别过点D,Q作x轴的垂线,垂足分别为F,G,
∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),
∴FB=PG=3﹣1=2,
∴点P的横坐标为(1+2)﹣2=﹣1+2或(1﹣2)﹣2=﹣1﹣2,
即P(﹣1+2,0)、Q(1+2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).
【点评】此题是二次函数综合题,主要考查了待定系数法,等腰三角形的性质,平移的性质,用方程的思想解决问题是解本题的关键.
【例3】(2018河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.
(1)求抛物线的解析式;
(2)过点A的直线交直线BC于点M.
①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;
②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.
【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;
(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;
②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),
AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.
【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),
当y=0时,x﹣5=0,解得x=5,则B(5,0),
把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,
∴【答案】抛物线解析式为y=﹣x2+6x﹣5;
(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),
∵B(5,0),C(0,﹣5),
∴△OCB为等腰直角三角形,
∴∠OBC=∠OCB=45°,
∵AM⊥BC,
∴△AMB为等腰直角三角形,
∴AM=AB=×4=2,
∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,
∴PQ=AM=2,PQ⊥BC,
作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,
∴PD=PQ=×2=4,
设P(m,﹣m2+6m﹣5),则D(m,m﹣5),
当P点在直线BC上方时,
PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,
当P点在直线BC下方时,
PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,
综上所述,P点的横坐标为4或或;
②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,
∵M1A=M1C,
∴∠ACM1=∠CAM1,
∴∠AM1B=2∠ACB,
∵△ANB为等腰直角三角形,
∴AH=BH=NH=2,
∴N(3,﹣2),
易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),
设直线EM1的解析式为y=﹣x+b,
把E(,﹣)代入得﹣+b=﹣,解得b=﹣,
∴直线EM1的解析式为y=﹣x﹣,
解方程组得,则M1(,﹣);
在直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,
设M2(x,x﹣5),
∵3=,
∴x=,
∴M2(,﹣),
综上所述,点M的坐标为(,﹣)或(,﹣).
【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
【例4】(2020湖南怀化)如图所示,抛物线与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.
(1)求点C及顶点M的坐标.
(2)若点N是第四象限内抛物线上的一个动点,连接求面积的最大值及此时点N的坐标.
(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形.若存在,求出点G的坐标;若不存在,试说明理由.
(4)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与相似.若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1) (0,-3),(1,-4);(2) ,();(3) G点坐标存在,为(2,-3)或(4,5)或(-2,1);(4) P点坐标存在,为或.
【解析】
【分析】
(1)令抛物线解析式中x=0即可求出C点坐标,由公式即可求出顶点M坐标;
(2)如下图所示,过N点作x轴的垂线交直线BC于Q点,设N(),求出BC解析式,进而得到Q点坐标,最后根据即可求解;
(3)设D点坐标为(1,t),G点坐标为(),然后分成①DG是对角线;②DB是对角线;③DC是对角线时三种情况进行讨论即可求解;
(4)连接AC,由CE=CB可知∠B=∠E,求出MC的解析式,设P(x,-x-3),然后根据△PEO相似△ABC,分成和讨论即可求解.
【详解】解:(1)令中x=0,此时y=-3,故C点坐标为(0,-3),
又二次函数的顶点坐标为,代入数据解得M点坐标为,
故答案为:C点坐标为(0,-3), M点坐标为(1,-4);
(2) 过N点作x轴的垂线交直线BC于Q点,连接BN,CN,如下图所示:
令中y=0,解得B(3,0),A(-1,0),
设直线BC的解析式为:,代入C(0,-3),B(3,0),
∴,解得,即直线BC的解析式为:,
设N点坐标为(),故Q点坐标为,其中,

,其中分别表示Q,C,B三点的横坐标,
且,,
故,其中,
当时,有最大值为,
此时N的坐标为(),
故答案为:有最大值为,N的坐标为();
(3) 设D点坐标为(1,t),G点坐标为(),且B(3,0),C(0,-3)
分类讨论:
情况①:当DG为对角线时,则另一对角线是BC,由中点坐标公式可知:
线段DG的中点坐标为,即,
线段BC的中点坐标为,即,
此时DG的中点与BC的中点为同一个点,
故,解得,
检验此时四边形DCGB为平行四边形,此时G坐标为(2,-3);
情况②:当DB为对角线时,则另一对角线是GC,由中点坐标公式可知:
线段DB的中点坐标为,即,
线段GC的中点坐标为,即,
此时DB的中点与GC的中点为同一个点,
故,解得,
检验此时四边形DCBG为平行四边形,此时G坐标为(4,5);
情况③:当DC为对角线时,则另一对角线是GB,由中点坐标公式可知:
线段DC的中点坐标为,即,
线段GB的中点坐标为,即,
此时DB的中点与GC的中点为同一个点,
故,解得,
检验此时四边形DGCB为平行四边形,此时G坐标为(-2,1);
综上所述,G点坐标存在,为(2,-3)或(4,5)或(-2,1);
(4) 连接AC,OP,如下图所示,
设MC的解析式为:y=kx+m,代入C(0,-3),M(1,-4)
即,解得
∴MC的解析式为:,令,求得E点坐标为(-3,0),
∴OE=OB=3,且OC=OC,
∴CE=CB,即∠B=∠E,
设P(x,-x-3),又∵P点在线段EC上,∴-3则,,
由题意知:△PEO相似△ABC,
分类讨论:
情况①:
∴,解得,满足-3情况②:
∴,解得,满足-3综上所述,P点的坐标为或.
【点睛】本题考查了二次函数的图像和性质、平行四边形的存在性问题、相似三角形的性质和判定等,综合性较强,具有一定的难度,熟练掌握二次函数的图形和性质,学会用代数的方法求解几何问题.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)(共42张PPT)
2021-2022学年九年级中考复习专题系列
二次函数压轴题系列 精讲一
一、 双基目标
1、纵观全国各地区历年的出题动向来看,
二次函数压轴题的出题样式
大致分成三类;
①传统型;②创新型;③双抛物线型相关.
每个大类下边又分若干具体类型.
2、本节学习传统型中——线段问题、面积问题、平行四边形存在性问题
二、能力目标
通过对二次函数压轴题方法的系统剖析,训练.达到强化、深化学生运用初中数学知识、方法、思想、模型等的综合分析、解决问题的能力目标.
专题一 线段问题
“线段类“压轴题解题模型总结
(x1,y1)
(x2,y2)
A
B
如图,若纵线段(或直线)AB//y轴,
则AB=y1-y2(简称:上-下)
(x1,y1)
(x2,y2)
C
D
F
(x3,y3)
如图,若线段(或直线)CD与y轴不平行,则先表示出纵线段CF=y1-y3,再借助三角比,表示出CD的长.
如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣ x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.
(1)求抛物线的解析式;(2)若PE=5EF,求m的值;
(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.
【分析】(1)可将条件中的A,B两点代入直接求抛物线的解析式;
也可利用交点式,设抛物线为y=- (x+1)(x-5),展开即可.
抛物线的解析式为:y=﹣x2+4x+5.
典例精讲
(2)若PE=5EF,求m的值;
【分析】(2)依据“线段”计算模型,首先设P(m,-m2+4m+5),∵P,E,F在同一条垂线上,∴E(m,﹣ m+3.),F(m,0).
PE=yP-yE, (注意分类讨论),最后利用PE=5EF,列出方程求解即可.
(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,
请直接写出相应的点P的坐标;若不存在,请说明理由.
【分析】(3)如图,依据假设和题中条件可以推知四边形CEPE/是菱形.依据菱形的性质可以发现,EC=PE。据此建立方程求出P.
【解析】设P(m,-m2+4m+5),E(m,﹣ m+3),C(0,3)
作EM⊥y轴,∵sin∠OCD=OD:CD=4:5,∴ME:CE=4:5.有∵ME=m
∴ ,又∵PE=CE,

解得: 或
题后反思:
本题涉及到点与点关于直线对称的问题,主要考虑有两种计算模型。
方法一:借助菱形的性质,建立方程解答;
方法二:.若求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式(或称K点法)求出过已知点,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可解决问题.
(内蒙古赤峰市2017年)如图,二次函数 的图象交X轴于A,B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).
(1)求二次函数的解析式和直线BD的解析式;
(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;
(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2√2,若存在求出点Q的坐标;若不存在请说明理由.
典例精讲
(1)求二次函数的解析式和直线BD的解析式;
【分析】(1)依据条件可设抛物线为y=a(x-1)2+4,将B点代入得
a=-1.∴y=﹣x2+2x+3,∴D(0,3).又∵B(3,0),利用待定系数法即可求出直线BD解析式:y=﹣x+3
(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;
【解析】(2)依据条件可设M(m,-m2+2m+3),则P为(m,-m+3)
∴MP=yM-yP ∴MP=-m2+3m ∵a=-1<0,∴当
MP最大= (将m的值代入MP解析式即可)
(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2√2,
若存在求出点Q的坐标;若不存在请说明理由.
【解析】(3)如图,作QH⊥BD,QE⊥x轴,交BD于G.
设Q(n,-n2+2n+3),则G(n,-n+3)
∵D(0,3),B(3,0),∴OD=OB,∴△BOD是等腰直角三角形.
∴∠Q=∠QGH=∠BGE=45°.若QH=2√2,则QG=√2QH=4,
由(2)可知QG=yQ-yG,∴QG=-n2+3n,∴-n2+3n=±4.
解得:x=﹣1或x=4,∴Q(﹣1,0)或(4,﹣5),
综上可知存在满足条件的点Q,其坐标为(﹣1,0)或(4,﹣5).
注意:第(3)也可改编成“求BD边上的高最大时,Q的坐标,并求出高的最大值”.
(2021山东烟台)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.
(1)求抛物线及直线BC的函数表达式;
(2)点F是抛物线对称轴上一点,当FA+FC的值最小时,求出点F的坐标及FA+FC的最小值;
【分析】(1)用待定系数法即可求解;
(2)点A、B关于抛物线的对称轴对称,设抛物线的对称轴交BC于点F,则点F为所求点,此时,当FA+FC的值最小,进而求解;
F
典例精讲
反思:
第(2)问涉及到”两定一动“线段和最小的问题,用“将军饮马模型”画图解答.
(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.
【分析】(3)依据题中条件,本题可考虑利用“一线三垂直”相似模型解答(如右图),有关“直角问题”后期会再开一个专题讲解,这里就不赘述了.
如图,直线y=﹣ x+√3,分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+√3经过A,B两点.21*cnjy*com
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.www-2-1-cn
jy-com
【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;【来源:21·世纪·教育·网】
(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;
典例精讲
【分析】(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.
注意:本题也可以借助△DMH∽△CBO,利用相似三角形的性质——“周长比等于相似比”来解决.
专题二 面积问题
铅锤法“求面积的最值问题”
铅锤法:
1、过动点(M)向x轴作垂线,与两定点
(A,C)连线相交;
2、动点与交点连线即为“公共底”;
3、确定高:两定点横坐标差;
4、S=
解法3∶切线法
若要使△PBC的面积最大,只需使BC上的高最大.过点P作BC 的平行线L,当直线I与抛物线有唯一交点(即点P)时,BC上的高最大,此时△PBC的面积最大,于是,得到下面的切线法.
切线法:
若要使△PBC的面积最大,只需使BC上的高最大.过点P作BC 的平行线L,当直线I与抛物线有唯一交点(即点P)时,BC上的高最大,此时△PBC的面积最大,
(2017开封二模)如图,已知抛物线y=a(x+1)(x﹣5)与x轴从左至右交于A,B两点,与y轴交于点C(0,5).
(1)求该抛物线的函数解析式;
(2)D是第一象限内抛物线上的一个动点(与点C,B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,CD,直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.
(3)若M为抛物线对称轴上一动点,△MBC为直
角三角形,请直接写出点M的坐标.
典例精讲
【分析】(1)把C点坐标代入y=a(x+1)(x﹣5)中求出a的值即可得到抛物线解析式;
(2)先解方程﹣(x+1)(x﹣5)=0得A(﹣1,0),B(5,0),再利用待定系数法确定直线BC的解析式为y=﹣x+5,设D(x,﹣x2+4x+5),则E(x,﹣x+5),F(x,0),(0<x<5),则DE=﹣x2+5x,EF=﹣x+5,利用三角形的面积公式进行讨论:当DE:EF=2:3时,S△BDE:S△BEF=2:3;当DE:EF=3:2时,S△BDE:S△BEF=3:2,从而可得到关于x的方程,然后解方程求出x就看得到对应的D点坐标;
【答案】(1)y=﹣x2+4x+5;
(3)若M为抛物线对称轴上一动点,△MBC为直角三角形,请直接写出点M的坐标.
【分析】(3)如图,若△MBC为直角三角形,则有三种情况:
①∠MCB=90°(即MC⊥BC);
②∠MBC=90°(即MB⊥BC);
③∠CMB=90°(即MC⊥BM);
前两种可依据“两直线垂直,K1K2=-1的模型解决;
后一种则可构造“一线三垂直”相似模型解决.
C
综上所述,满足条件的M点的坐标为(2,7),(2,﹣3),(2,6),(2,﹣1).
注意:关于“直角问题”,将另设一个专题专门讲解,这里就不再细述.
如图(1)在直角坐标系中,直线y=x+3与x轴相交于点A,与y轴相交于点C,点B在x轴的正半轴上, 抛物线y=-x2-2x+3经过点A,B,C。在直线AC上方的抛物线上,是否存在一点M,使△MAC的面积最大?若存在,请求出点M的坐标;若不存在,请说明理由。
【解析】:作MF⊥x轴交AC与G点,
设M(m,-m2-2m+3),则G(m,m+3).
∵S△MAC=MG×OA/2 且MG=-m2-3m OA=3
∴S△MAC=3(-m2-3m)/2
典例精讲
(2021山东淄博)如图,在平面直角坐标系中,抛物线 (m>0)
与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C,连接BC.
(1)若OC=2OA,求抛物线对应的函数表达式;
(2)在(1)的条件下,点P位于直线BC上方的抛物线上,当△PBC面积最大时,
求点P的坐标;
【分析】(1)由OC=2OA,得C(0,2),代入抛物线可得m=4,抛物线对应的函数表达式为
典例精讲
(2)在(1)的条件下,点P位于直线BC上方的抛物线上,当△PBC面积最大时,
求点P的坐标;
【分析】(2)本问即可采用“最大面积”计算的两种模型解决.这里就采用“做切线”的方式来提供个参考.
【解析】作抛物线关于线段BC的切线,交抛物线于点P.此时点P即为所求.设切线为y=kx+b.令抛物线解析式y=0,求出B(4,0),另外C(0,2)利用待定系数法求出线段BC的解析式
∴切线的K=-1/2,∴y=-1/2x+b,联立切线与抛物线解析式,解得
∵抛物线与切线仅有一个交点,∴△=0,求的b=4. 解该方程可得x=2.将x=2代入抛物线解析式得y=3,所以P为(2,3)
(3)设直线y= x+b与抛物线交于B,G两点,问是否存在点E(在抛物线上),点F(在抛物线的对称轴上),使得以B,G,E,F为顶点的四边形成为矩形?若存在,求出点E,F的坐标;若不存在,说明理由.
【分析】(3)此问可分两种情况讨论:①BG为边,则EF必与BG平行,此种情况不成立;②BG为对角线,此种情况可以成立
(如右图),具体解法参看教案.
【答案】
(2021广西柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣ ).
(1)求抛物线的函数解析式;
(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;
(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,
,求 的最大值.
【分析】(1)交x轴于A(﹣1,0),B(3,0)两点,设二次函数的交点式y=a(x+1)(x﹣3),代入C(0,﹣ )可得解析式.
跟踪练习
(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;
【分析】(2)依据条件可以求出点E的坐标 ,进而求出直线BE的解析式 ,又因为OD⊥BE,所以依据两线垂直时,k1×k2=-1,可求出直线OD的解析式y=-2x。最后联立直线OD和抛物线解析式,解方程组即可得出D(1,﹣2).
(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,,求 的最大值.
【分析】(2)根据图形的特点,可以发现两个三角形的面积属于“同高不等底”的情况,∴S1:S2=MN:AN.然后构造八字型相似来解决线段比的问题(如图).
【解析】过点A作AD⊥x轴,ME//AD 分别交BC于点D,E.
∵点B(3,0),C(0,- ),设直线为y=kx+b,代入求出
又∵点A为(-1,0),∴将x=-1代入直线BC解析式得,y=-2.
∴D(-1,-2)∴AD=2,设M(m,        ),
则E(m,      ),∴EM=        ,由△AND∽△MNE,可得MN;AN=EM:AD.∴  = ,借此可求得最大值为
题后反思:
第(3)问涉及到面积比的问题,通常需要把面积比转化成线段比,最后借助二次函数的最值计算模型解答.
专题三 平行四边形存在性问题
在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.
【分析】(1)根据本题特点,可以采用两种方式求函数解析式,
①设成“一般式”,利用三点法求;②设成“交点式”代入B点求.
(2)设出M点的坐标,利用“面积最大值”两种计算模型均可求解.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使
得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
【分析】(3)遇见“两定,两动”解决平行四边形的问题时,解题步骤如下:
①确定定点和定长;②画图——”定长平移、定长平分”.如下图,
其中,Q1,Q2,Q3三种情况都属于“定长平移”作出(以OB为边);
Q4属于“定长平分”做出的(以OB为对角线).
P3
Q3
(2020黔东南)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).
(1)求抛物线的解析式.
(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.
(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.
【分析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;
【答案】抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;
【分析】(2)
方法一:先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;
方法二:也可根据“两定一动”找等腰的的特点,采取
“两圆一线”画等腰的方式,作出图形,而后分别求解.如右图:
(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.
(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、
D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;
若不存在,请说明理由.
【分析】(3)利用”定长平移、定长平分”先确定出点Q的位置,然后依据条件求出Q 的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.
如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C,直线y=x-5经过点B,C.
(1)求抛物线的解析式;
(2)过点A的直线交直线BC于点M.
①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC
于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;
②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.
【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;
【答案】抛物线解析式为y=﹣x2+6x﹣5;
典例精讲
【分析】(2)先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2√2,接着根据平行四边形的性质得到PQ=AM=2√2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=√2,PQ=4,
设P(m,﹣m2+6m﹣5),则D(m,m﹣5),
讨论:①当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;
②当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;
②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.
【分析】(3)本题分两种可能,(如右图)M1,M2
①当AM1=CM1时;②当AM2=AM1时.
作EM1⊥AC,且平分AC,先求出AC的解析式,然后依据EM1⊥AC,求出直线EM1的k值,又因为其过AC中点,求出AC中点,代入直线EM1的解析式,即可求出EM1的解析式。然后与直线BC联立,即可求出M1 ,作AN⊥BC,再作AM2与AM1关于AN对称.先求出N点坐标,然后利用“中点坐标公式”求出M2
跟踪练习
(2020湖南怀化.节选)如图所示,抛物线y=x2-2x-3与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.
(1)求点C及顶点M的坐标.
(2)若点N是第四象限内抛物线上的一个动点,连接BN、CN.求△BCN面积的最大值及此时点N的坐标.
【分析】
(1)令抛物线解析式中x=0即可求出C点坐标,由公式
即可求出顶点M坐标;
故答案为:C点坐标为(0,-3), M点坐标为(1,-4);
【分析】(2)如图,利用“铅锤法”即可求出△BCN的最大面积,也可尝试用“切线法”求解;
【解析】过N点作x轴的垂线交直线BC于Q点,连接BN,CN,如下图所示:
令抛物线y=x2-2x-3,y=0,求出B(3,0),又∵C(0,-3)利用待定系数法可求出BC的解析式y=x-3。设N为(n,n2-2n-3),则Q为(n,n-3),
依据铅锤法即可表示出 ,利用面积最大值的算法,
即可求出
(2)若点N是第四象限内抛物线上的一个动点,连接BN、CN.求△BCN面积的最大值
及此时点N的坐标.
(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、
G为顶点的四边形是平行四边形.若存在,求出点G的坐标;若不存在,试说明理由.
【分析】(3)利用”定长平移、定长平分”先确定出点G的位置,然后依据条件求出G 的纵坐标,代入抛物线解析式求出点G的横坐标,即可得出结论.
综上所述,G点坐标存在,为(2,-3)或(4,5)或(-2,5);中小学教育资源及组卷应用平台
二次函数压轴题系列 精讲一
一、 双基目标
1、纵观全国各地区历年的出题动向来看,
二次函数压轴题的出题样式
大致分成三类;
①传统型;②创新型;③双抛物线型相关.
每个大类下边又分若干具体类型.
2、本节学习传统型中——线段问题、面积问题、平行四边形存在性问题
二、能力目标
通过对二次函数压轴题方法的系统剖析,训练.达到强化、深化学生运用初中数学知识、方法、思想、模型等的综合分析、解决问题的能力目标.
1、看课件,复习知识体系和基本方法;
2、学习例题,完成变式练习;
3、完成课后练习,巩固基础,提升能力。
专题一 线段问题
【解题模型简介】
【例1】 如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣ x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.
(1)求抛物线的解析式;
(2)若PE=5EF,求m的值;
(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.
【例2】(2017 内蒙古赤峰市)如图,二次函数的图象交轴于两点,交轴于点,点的坐标为,顶点的坐标为.
(1)求二次函数的解析式和直线的解析式;
(2)点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;
(3)在抛物线上是否存在异于的点,使中边上的高为,若存在求出点的坐标;若不存在请说明理由.
【例3】(2021山东烟台)(14分)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.
(1)求抛物线及直线BC的函数表达式;
(2)点F是抛物线对称轴上一点,当FA+FC的值最小时,求出点F的坐标及FA+FC的最小值;
(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.
【例4】(2017年山东省东营市)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.
 
专题二 面积问题
【解题模型简介】
铅锤法:
1、过动点(M)向x轴作垂线,与两定点
(A,C)连线相交;
2、动点与交点连线即为“公共底”;
3、确定高:两定点横坐标差;
S=公共底×高(两定点横坐标差)/2
【例1】(2017开封二模)如图,已知抛物线y=a(x+1)(x﹣5)与x轴从左至右交于A,B两点,与y轴交于点C(0,5).
(1)求该抛物线的函数解析式;
(2)D是第一象限内抛物线上的一个动点(与点C,B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,CD,直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.
(3)若M为抛物线对称轴上一动点,△MBC为直角三角形,请直接写出点M的坐标.
【例2】 如图(1)在直角坐标系中,直线y=x+3与x轴相交于点A,与y轴相交于点C,点B在x轴的正半轴上, 抛物线y=-x2-2x+3经过点A,B,C。在直线AC上方的抛物线上,是否存在一点M,使△MAC的面积最大?若存在,请求出点M的坐标;若不存在,请说明理由。
【例3】(2021山东淄博)(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+ x+(m>0)与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C,连接BC.
(1)若OC=2OA,求抛物线对应的函数表达式;
(2)在(1)的条件下,点P位于直线BC上方的抛物线上,当△PBC面积最大时,求点P的坐标;
(3)设直线y=x+b与抛物线交于B,G两点,问是否存在点E(在抛物线上),点F(在抛物线的对称轴上),使得以B,G,E,F为顶点的四边形成为矩形?若存在,求出点E,F的坐标;若不存在,说明理由.
【变式训练】(2021广西柳林)(10分)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).
(1)求抛物线的函数解析式;
(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的
坐标;
(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.
专题三 平行四边形存在性
【例1】在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
【例2】(2020贵州黔东南)(14分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).
(1)求抛物线的解析式.
(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.
(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.
【例3】(2018河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.
(1)求抛物线的解析式;
(2)过点A的直线交直线BC于点M.
①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;
②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.
【例4】(2020湖南怀化)如图所示,抛物线与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.
(1)求点C及顶点M的坐标.
(2)若点N是第四象限内抛物线上的一个动点,连接求面积的最大值及此时点N的坐标.
(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形.若存在,求出点G的坐标;若不存在,试说明理由.
(4)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与相似.若存在,求出点P的坐标;若不存在,请说明理由.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
二次函数压轴题系列精讲一
1.(13分)(2020 天水)如图所示,拋物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(﹣2,0),点C的坐标为C(0,6),对称轴为直线x=1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB.
(1)求抛物线的函数表达式;
(2)当△BCD的面积等于△AOC的面积的时,求m的值;
(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.
2.(2021江苏扬州)(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C.
(1)b=   ,c=   ;
(2)若点D在该二次函数的图象上,且S△ABD=2S△ABC,求点D的坐标;
(3)若点P是该二次函数图象上位于x轴上方的一点,且S△APC=S△APB,直接写出点P的坐标.
3.(2021内蒙赤峰)(14分)如图,抛物线y=﹣x2+bx+c与x轴交于(﹣3,0)、B(1,0)两点,与y轴交于点C,对称轴l与x轴交于点F,直线m∥AC,点E是直线AC上方抛物线上一动点,过点E作EH⊥m,垂足为H,交AC于点G,连接AE、EC、CH、AH.
(1)抛物线的解析式为  y=  ;
(2)当四边形AHCE面积最大时,求点E的坐标;
(3)在(2)的条件下,连接EF,点P是x轴上一动点,在抛物线上是否存在点Q,使得以F、E、P、Q为顶点,以EF为一边的四边形是平行四边形.若存在,请直接写出点Q的坐标;若不存在,说明理
由.
4、(2021内蒙通辽)(12分)如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y轴于点C,动点P在抛物线的对称轴上.
(1)求抛物线的解析式;
(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;
(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
5.(2020甘肃金昌)如图,在平面直角坐标系中,抛物线交轴于两点,交轴于点,且.点是第三象限内抛物线上的一动点.
(1)求此抛物线的表达式;
(2)若,求点的坐标;
(3)连接,求面积的最大值及此时点的坐标.
6、(2020齐齐哈尔)综合与探究
在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.
(1)求抛物线解析式;
(2)直线AB的函数解析式为   ,点M的坐标为   ,cos∠ABO=   ;
连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为   ;
(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;
(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
7.(2020湖北黄冈)(14分)已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y铀交于点C(0,3).顶点为点D.
(1)求抛物线的解析式;
(2)若过点C的直线交线段AB于点E,且S△ACE:S△CEB=3:5,求直线CE的解析式;
(3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;
(4)已知点H(0,),G(2,0),在抛物线对称轴上找一点F,使HF+AF的值最小.此时,在抛物线上是否存在一点K,使KF+KG的值最小?若存在,求出点K的坐标;若不存在,请说明理由.
8、(2020湖南郴州)如图,抛物线与轴交于,与轴交于点.已知直线过两点.
(1)求抛物线和直线的表达式;
(2)点是抛物线上的一个动点,
①如图,若点在第一象限内,连接,交直线于点.设的面积为,的面积为,求的最大值;
②如图2,抛物线的对称轴与轴交于点,过点作,垂足为.点是对称轴上的一个动点,是否存在以点为顶点的四边形是平行四边形
若存在,求出点的坐标;若不存在,请说明理由.
9.(2020呼伦贝尔)(13分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(4,0),与y轴交于点C,连接BC,点P是线段BC上的动点(与点B,C不重合),连接AP并延长AP交抛物线于点Q,连接CQ,BQ,设点Q的横坐标为m.
(1)求抛物线的解析式和点C的坐标;
(2)当△BCQ的面积等于2时,求m的值;
(3)在点P运动过程中,是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
10、(2020山东菏泽)如图,抛物线与轴相交于,两点,与轴相交于点,,,直线是抛物线的对称轴,在直线右侧的抛物线上有一动点,连接,,,.
(1)求抛物线函数表达式;
(2)若点在轴的下方,当的面积是时,求的面积;
(3)在(2)的条件下,点是轴上一点,点是抛物线上一动点,是否存在点,使得以点,,,为顶点,以为一边的四边形是平行四边形,若存在,求出点的坐标;若不存在,请说明理由.
11、(2020四川雅安)(13分)已知二次函数y=x2+bx+c(a≠0)的图象与x轴的交于A、B(1,0)两点,与y轴交于点C(0,﹣3),
(1)求二次函数的表达式及A点坐标;
(2)D是二次函数图象上位于第三象限内的点,求点D到直线AC的距离取得最大值时点D的坐标;
(3)M是二次函数图象对称轴上的点,在二次函数图象上是否存在点N.使以M、N、B、O为顶点的四边形是平行四边形?若有,请写出点N的坐标(不写求解过程).
12、(2020四川遂宁)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.
(1)求抛物线的解析式.
(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.
(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
13、(10分)(2017 岳阳)如图,抛物线y=x2+bx+c经过点B(3,0),C(0,﹣2),直线l:y=﹣x﹣交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合).
(1)求抛物线的解析式;
(2)当点P在直线l下方时,过点P作PM∥x轴交l于点M,PN∥y轴交l于点N,求PM+PN的最大值.
(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.
14、(2021内蒙赤峰)(14分)如图,抛物线y=﹣x2+bx+c与x轴交于(﹣3,0)、B(1,0)两点,与y轴交于点C,对称轴l与x轴交于点F,直线m∥AC,点E是直线AC上方抛物线上一动点,过点E作EH⊥m,垂足为H,交AC于点G,连接AE、EC、CH、AH.
(1)抛物线的解析式为  y=﹣x2﹣2x+3 ;
(2)当四边形AHCE面积最大时,求点E的坐标;
(3)在(2)的条件下,连接EF,点P是x轴上一动点,在抛物线上是否存在点Q,使得以F、E、P、Q为顶点,以EF为一边的四边形是平行四边形.若存在,请直接写出点Q的坐标;若不存在,说明理由.
15、(2021湖南湘西州)(16分)如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.
(1)求抛物线的解析式;
(2)连接BC,求直线BC的解析式;
(3)请在抛物线的对称轴上找一点P,使AP+PC的值最小,求点P的坐标,并求出此时AP+PC的最小值;
(4)点M为x轴上一动点,在抛物线上是否存在一点N,使得以A、C、M、N四点为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
16、(2021牡丹江)(6分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,P为第二象限内抛物线上一点.
(1)求抛物线的解析式,并写出顶点坐标;
(2)如图,连接PB,PO,PC,BC.OP交BC于点D,当S△CPD:S△BPD=1:2时,求出点D的坐标.
17、(2021海南)(16分)已知抛物线y=ax2+x+c与x轴交于A、B两点,与y轴交于C点,且点A的坐标为(﹣1,0)、点C的坐标为(0,3).
(1)求该抛物线的函数表达式;
(2)如图1,若该抛物线的顶点为P,求△PBC的面积;
(3)如图2,有两动点D、E在△COB的边上运动,速度均为每秒1个单位长度,它们分别从点C和点B同时出发,点D沿折线COB按C→O→B方向向终点B运动,点E沿线段BC按B→C方向向终点C运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动时间为t秒,请解答下列问题:
①当t为何值时,△BDE的面积等于;
②在点D、E运动过程中,该抛物线上存在点F,使得依次连接AD、DF、FE、EA得到的四边形ADFE是平行四边形,请直接写出所有符合条件的点F的坐标.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)