中小学教育资源及组卷应用平台
专题22 二次函数中的平行四边形问题
1、如图,在平面直角坐标系中,抛物线y=x ( http: / / www.21cnjy.com )2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.21世纪教育网版权所有
( http: / / www.21cnjy.com / )
(1)分别求出直线AB和这条抛物线的解析式.
(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.
(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.21教育网
2、如图,在平面直角坐标系中,抛物线y=a ( http: / / www.21cnjy.com )x2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).21cnjy.com
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如图1,过点P作PE⊥y轴于点E.求△PAE面积S的最大值;
(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.2·1·c·n·j·y
( http: / / www.21cnjy.com / )
3、如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2, 3).21·cn·jy·com
(1)求抛物线的解析式和直线AD的解析式;
(2)过x轴上的点E (a,0) 作 ( http: / / www.21cnjy.com )直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.
( http: / / www.21cnjy.com / )
4、如图1,在平面直角坐标系x ( http: / / www.21cnjy.com )Oy中,抛物线W的函数表达式为y=﹣x2+x+4.抛物线W与x轴交于A,B两点(点B在点A的右侧,与y轴交于点C,它的对称轴与x轴交于点D,直线l经过C、D两点.
(1)求A、B两点的坐标及直线l的函数表达式.
(2)将抛物线W沿x轴向右平移得 ( http: / / www.21cnjy.com )到抛物线W′,设抛物线W′的对称轴与直线l交于点F,当△ACF为直角三角形时,求点F的坐标,并直接写出此时抛物线W′的函数表达式.21·世纪*教育网
(3)如图2,连接AC,CB,将△ACD沿 ( http: / / www.21cnjy.com )x轴向右平移m个单位(0<m≤5),得到△A′C′D′.设A′C交直线l于点M,C′D′交CB于点N,连接CC′,MN.求四边形CMNC′的面积(用含m的代数式表示).
( http: / / www.21cnjy.com / )
5、如图,三角形是以为底边的等腰三角形,点、分别是一次函数的图象与轴、轴的交点,点在二次函数的图象上,且该二次函数图象上存在一点使四边形能构成平行四边形.www-2-1-cnjy-com
( http: / / www.21cnjy.com / )
(1)试求、的值,并写出该二次函数表达式;
(2)动点沿线段从到,同时动点沿线段从到都以每秒1个单位的速度运动,问:
①当运动过程中能否存在?如果不存在请说明理由;如果存在请说明点的位置?
②当运动到何处时,四边形的面积最小?此时四边形的面积是多少?
6、如图,在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;www.21-cn-jy.com
(3)若点P是抛物线上的动点,点 ( http: / / www.21cnjy.com )Q是直线y=-x上的动点,判断有几个位置能使以点P,Q,B,O为顶点的四边形为平行四边形(要求PQ∥OB),直接写出相应的点Q的坐标.【来源:21·世纪·教育·网】
( http: / / www.21cnjy.com / )
7、如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).
(1)求抛物线与直线AC的函数解析式;
(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;2-1-c-n-j-y
(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.21*cnjy*com
( http: / / www.21cnjy.com / )
8、如图,抛物线与轴交、两点(点在点左侧),直线与抛物线交于、两点,其中点的横坐标为2.【出处:21教育名师】
( http: / / www.21cnjy.com / )
(1)求、两点的坐标及直线的函数表达式;
(2)是线段上的一个动点,过点作轴的平行线交抛物线于点,求线段长度的最大值;
(3)点是抛物线上的动 ( http: / / www.21cnjy.com )点,在轴上是否存在点,使、、、四个点为顶点的四边形是平行四边形?如果存在,写出所有满足条件的点坐标(请直接写出点的坐标,不要求写过程);如果不存在,请说明理由.21教育名师原创作品
9、如图,已知二次函数的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0(1)求a的值和直线AB的解析式;
(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;
(3)点H是该二次函数图象上位于第一象 ( http: / / www.21cnjy.com )限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且周长取最大值时,求点G的坐标.21*cnjy*com
( http: / / www.21cnjy.com / )
10、如图,在平面直角坐标系中,抛 ( http: / / www.21cnjy.com )物线y=ax2+bx﹣3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C,顶点是D,对称轴交x轴于点E.【版权所有:21教育】
( http: / / www.21cnjy.com / )
(1)求抛物线的解析式;
(2)点P是抛物线在第四象限内的一点,过点P作PQ∥y轴,交直线AC于点Q,设点P的横坐标是m.
①求线段PQ的长度n关于m的函数关系式;
②连接AP,CP,求当△ACP面积为时点P的坐标;
(3)若点N是抛物线对称轴上一点,则抛物 ( http: / / www.21cnjy.com )线上是否存在点M,使得以点B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出线段BN的长度;若不存在,请说明理由.【来源:21cnj*y.co*m】
11、如图,直线y=﹣2x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.
(1)求抛物线的解析式;
(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?
(3)在(2)的结论下,过点E作y轴的平行线 ( http: / / www.21cnjy.com )交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
( http: / / www.21cnjy.com / )
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题22 二次函数中的平行四边形问题
1、如图,在平面直角坐标系中,抛物 ( http: / / www.21cnjy.com )线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.21教育网
( http: / / www.21cnjy.com / )
(1)分别求出直线AB和这条抛物线的解析式.
(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.
(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.【版权所有:21教育】
【答案】(1)抛物线的解析式是.直线AB的解析式是.
(2) .
(3)P点的横坐标是或.
【解析】
解:(1)把A(3,0)B(0,-3)代入,得
解得
所以抛物线的解析式是.
设直线AB的解析式是,把A(3,0)B(0,)代入,得
解得
所以直线AB的解析式是.
(2)设点P的坐标是(),则M(,),因为在第四象限,所以PM=,当PM最长时,此时
==.
(3)若存在,则可能是:
①P在第四象限:平行四边形OBMP ,PM=OB=3, PM最长时,所以不可能.
②P在第一象限平行四边形OBPM: PM=OB=3,,解得,(舍去),所以P点的横坐标是.
③P在第三象限平行四边形OBPM:PM=OB=3,,解得(舍去),
①,所以P点的横坐标是.
所以P点的横坐标是或.
2、如图,在平面直角坐标系中,抛物线y ( http: / / www.21cnjy.com )=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).2·1·c·n·j·y
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如图1,过点P作PE⊥y轴于点E.求△PAE面积S的最大值;
(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.21*cnjy*com
( http: / / www.21cnjy.com / )
【答案】(1)抛物线的解 ( http: / / www.21cnjy.com )析式为y=﹣x2﹣2x+3,顶点D的坐标为(﹣1,4);(2)△PAE面积S的最大值是;(3)点Q的坐标为(﹣2+,2﹣4).21教育名师原创作品
【解析】解:(1)∵抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,
∴ ,得,
∴抛物线解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴抛物线的顶点坐标为(﹣1,4),
即该抛物线的解析式为y=﹣x2﹣2x+3,顶点D的坐标为(﹣1,4);
(2)设直线AD的函数解析式为y=kx+m,
,得,
∴直线AD的函数解析式为y=2x+6,
∵点P是线段AD上一个动点(不与A、D重合),
∴设点P的坐标为(p,2p+6),
∴S△PAE==﹣(p+)2+,
∵﹣3<p<﹣1,
∴当p=﹣时,S△PAE取得最大值,此时S△PAE=,
即△PAE面积S的最大值是;
(3)抛物线上存在一点Q,使得四边形OAPQ为平行四边形,
∵四边形OAPQ为平行四边形,点Q在抛物线上,
∴OA=PQ,
∵点A(﹣3,0),
∴OA=3,
∴PQ=3,
∵直线AD为y=2x+6,点P在线段AD上,点Q在抛物线y=﹣x2﹣2x+3上,
∴设点P的坐标为(p,2p+6),点Q(q,﹣q2﹣2q+3),
∴,
解得,或(舍去),
当q=﹣2+时,﹣q2﹣2q+3=2﹣4,
即点Q的坐标为(﹣2+,2﹣4).
3、如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2, 3).【来源:21·世纪·教育·网】
(1)求抛物线的解析式和直线AD的解析式;
(2)过x轴上的点E (a,0) ( http: / / www.21cnjy.com )作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.
( http: / / www.21cnjy.com / )
【答案】(1) y=-x2+2x+3;y=x+1;(2)a的值为-3或.
【解析】
解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得:
解得:b=2,c=3,
∴抛物线的解析式为y=-x2+2x+3;
当y=0时,-x2+2x+3=0,
解得:x=3,或x=-1,
∵B(3,0),
∴A(-1,0);
设直线AD的解析式为y=kx+a,
把A和D的坐标代入得:
解得:k=1,a=1,
∴直线AD的解析式为y=x+1;
(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,
则F点即为(0,3),
∵AE=-1-a=2,
∴a=-3;
②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,
设F (a-3,-3),
由-(a-3)2+2(a-3)+3=-3,
解得:a=;
综上所述,满足条件的a的值为-3或.
4、如图1,在平面直角坐标系xOy中,抛 ( http: / / www.21cnjy.com )物线W的函数表达式为y=﹣x2+x+4.抛物线W与x轴交于A,B两点(点B在点A的右侧,与y轴交于点C,它的对称轴与x轴交于点D,直线l经过C、D两点.
(1)求A、B两点的坐标及直线l的函数表达式.
(2)将抛物线W沿x轴向右平移得 ( http: / / www.21cnjy.com )到抛物线W′,设抛物线W′的对称轴与直线l交于点F,当△ACF为直角三角形时,求点F的坐标,并直接写出此时抛物线W′的函数表达式.
(3)如图2,连接AC,CB,将△ ( http: / / www.21cnjy.com )ACD沿x轴向右平移m个单位(0<m≤5),得到△A′C′D′.设A′C交直线l于点M,C′D′交CB于点N,连接CC′,MN.求四边形CMNC′的面积(用含m的代数式表示).
( http: / / www.21cnjy.com / )
【答案】(1)点A坐标为(﹣ ( http: / / www.21cnjy.com )3,0),点B的坐标为(7,0),y=﹣2x+4;(2) 点F的坐标为(5,﹣6),y=﹣x2+x;(3) 四边形CMNC′的面积为m2.
【解析】(1)当y=0时,﹣x2++4=0,解得x1=﹣3,x2=7,
∴点A坐标为(﹣3,0),点B的坐标为(7,0).
∵﹣=
∴抛物线w的对称轴为直线x=2,
∴点D坐标为(2,0).
当x=0时,y=4,
∴点C的坐标为(0,4).
设直线l的表达式为y=kx+b,
解得
∴直线l的解析式为y=﹣2x+4;
(2)∵抛物线w向右平移,只有一种情况符合要求,
即∠FAC=90°,如图.
( http: / / www.21cnjy.com / )
此时抛物线w′的对称轴与x轴的交点为G,
∵∠1+∠2=90°∠2+∠3=90°,
∴∠1=∠3,
∴tan∠1=tan∠3,
∴=.设点F的坐标为(xF,﹣2xF+4),
∴=,解得xF=5,﹣2xF+4=﹣6,
∴点F的坐标为(5,﹣6),此时抛物线w′的函数表达式为y=﹣x2+x;
(3)由平移可得:点C′,点A′ ( http: / / www.21cnjy.com ),点D′的坐标分别为C′(m,4),A′(﹣3+m,0),D′(2+m,0),CC′∥x轴,C′D′∥CD,
可用待定系数法求得
直线A′C′的表达式为y=x+4﹣m,
直线BC的表达式为y=﹣x+4,
直线C′D′的表达式为y=﹣2x+2m+4,
分别解方程组和
解得和
∴点M的坐标为(m,﹣m+4),点N的坐标为(m,﹣ m+4),
∴yM=yN
∴MN∥x轴,
∵CC′∥x轴,
∴CC′∥MN.
∵C′D′∥CD,
∴四边形CMNC′是平行四边形,
∴S=m[4﹣(﹣m+4)]
=m2
5、如图,三角形是以为底边的等腰三角形,点、分别是一次函数的图象与轴、轴的交点,点在二次函数的图象上,且该二次函数图象上存在一点使四边形能构成平行四边形.
( http: / / www.21cnjy.com / )
(1)试求、的值,并写出该二次函数表达式;
(2)动点沿线段从到,同时动点沿线段从到都以每秒1个单位的速度运动,问:
①当运动过程中能否存在?如果不存在请说明理由;如果存在请说明点的位置?
②当运动到何处时,四边形的面积最小?此时四边形的面积是多少?
【答案】(1),;(2) ①当点运动到距离点个单位长度处,有;②当点运动到距离点个单位处时,四边形面积最小,最小值为.
【解析】
【分析】
(1)根据一次函数解析式求出A和C的 ( http: / / www.21cnjy.com )坐标,再由△ABC是等腰三角形可求出点B的坐标,根据平行四边形的性质求出点D的坐标,利用待定系数法即可得出二次函数的表达式;
(2)①设点P运动了t秒,PQ⊥AC,进而求出AP、CQ和AQ的值,再由△APQ∽△CAO,利用对应边成比例可求出t的值,即可得出答案;
②将问题化简为△APQ的面积的最大值,根据几何关系列出关于时间的二次函数,根据二次函数的性质,求出函数的最大值,即求出△APQ的面积的最大值,进而求出四边形PDCQ面积的最小值.
【详解】
解:(1)由,
令,得,所以点;
令,得,所以点,
∵是以为底边的等腰三角形,
∴点坐标为,
又∵四边形是平行四边形,
∴点坐标为,
将点、点代入二次函数,可得,
解得:,
故该二次函数解析式为:.
(2)∵,,
∴.
①设点运动了秒时,,此时,,,
∵,
∴,,
∴,
∴,即,
解得:.
即当点运动到距离点个单位长度处,有.
②∵,且,
∴当的面积最大时,四边形的面积最小,
当动点运动秒时,,,,
设底边上的高为,作于点,
由可得:,
解得:,
∴,
∴当时,达到最大值,此时,
故当点运动到距离点个单位处时,四边形面积最小,最小值为.
( http: / / www.21cnjy.com / )
6、如图,在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;21cnjy.com
(3)若点P是抛物线上的动点,点Q是 ( http: / / www.21cnjy.com )直线y=-x上的动点,判断有几个位置能使以点P,Q,B,O为顶点的四边形为平行四边形(要求PQ∥OB),直接写出相应的点Q的坐标.
( http: / / www.21cnjy.com / )
【答案】(1)y=x2+x-4;(2)当m=-2时,S有最大值,S最大=4;(3)满足题意的Q点的坐标有三个,分别是(-2+2,2-2),(-2-2,2+2),(-4,4).
【思路引导】
(1)已知抛物线与x轴的两个交点的横坐标,一般选用两点式,利用待定系数法求解即可;
(2)利用抛物线的解析式表示出点M的 ( http: / / www.21cnjy.com )纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;
(3)利用直线与抛物线的解 ( http: / / www.21cnjy.com )析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然后解关于x的一元二次方程即可得解.www.21-cn-jy.com
【解析】
(1)设抛物线的解析式为y=a(x+4)(x-2),把B(0,-4)代入得,
-4=a×(0+4)(0-2),解得a=,
∴抛物线的解析式为:y=(x+4)(x-2),即y=x2+x-4;
(2)过点M作MD⊥x轴于点D,设M点的坐标为(m,n),
则AD=m+4,MD=-n,n=m2+m-4,
∴S=S△AMD+S梯形DMBO-S△ABO
==
-2n-2m-8=-2×(m2+m-4)-2m-8=-m2-4m
=-(m+2)2+4(-4<m<0);
∴S最大值=4.(3)设P(x,x2+x-4).
①如图1,当OB为边时,根据平行四边形的性质知PQ∥OB,
∴Q的横坐标等于P的横坐标,
又∵直线的解析式为y=-x,则Q(x,-x).由PQ=OB,
得|-x-(x2+x-4)|=4,解得x=0,-4,-2±2.x=0不合题意,舍去.
由此可得Q(-4,4)或(-2+2,2-2)或(-2-2,2+2);
②如图2,当BO为对角线时,知A与P应该重合,OP=4.
四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4).
故满足题意的Q点的坐标有四个,分别是
(-4,4),(4,-4),(-2+2,2-2),(-2-2,2+2).
【方法总结】
本题是二次函数综合题,交点式求解析式,二次函 ( http: / / www.21cnjy.com )数与三角形面积最值问题的公共底的辅助线的做法要注意,二次函数中存在平行四边形的方法,要分别对已知边的分别为平行四边形的边或是对角线进行分类讨论.
7、如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).
(1)求抛物线与直线AC的函数解析式;
(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;
(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.
( http: / / www.21cnjy.com / )
【答案】(1)(2)S=﹣m2﹣4m+4(﹣4<m<0)(3)(﹣3,2)、(,﹣2)、(,﹣2)
【解析】
(1)∵A(﹣4,0)在二次函数y=ax2﹣x+2(a≠0)的图象上,
∴0=16a+6+2,
解得a=﹣,
∴抛物线的函数解析式为y=﹣x2﹣x+2;
∴点C的坐标为(0,2),
设直线AC的解析式为y=kx+b,则
,
解得,
∴直线AC的函数解析式为:;
(2)∵点D(m,n)是抛物线在第二象限的部分上的一动点,
∴D(m,﹣m2﹣m+2),
过点D作DH⊥x轴于点H,则DH=﹣m2﹣m+2,AH=m+4,HO=﹣m,
∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,
∴S=(m+4)×(﹣m2﹣m+2)+(﹣m2﹣m+2+2)×(﹣m),
化简,得S=﹣m2﹣4m+4(﹣4<m<0);
(3)①若AC为平行四边形的一边,则C、E到AF的距离相等,
∴|yE|=|yC|=2,
∴yE=±2.
当yE=2时,解方程﹣x2﹣x+2=2得,
x1=0,x2=﹣3,
∴点E的坐标为(﹣3,2);
当yE=﹣2时,解方程﹣x2﹣x+2=﹣2得,
x1=,x2=,
∴点E的坐标为(,﹣2)或(,﹣2);
②若AC为平行四边形的一条对角线,则CE∥AF,
∴yE=yC=2,
∴点E的坐标为(﹣3,2).
综上所述,满足条件的点E的坐标为(﹣3,2)、(,﹣2)、(,﹣2).
( http: / / www.21cnjy.com / )
8、如图,抛物线与轴交、两点(点在点左侧),直线与抛物线交于、两点,其中点的横坐标为2.www-2-1-cnjy-com
( http: / / www.21cnjy.com / )
(1)求、两点的坐标及直线的函数表达式;
(2)是线段上的一个动点,过点作轴的平行线交抛物线于点,求线段长度的最大值;
(3)点是抛物线上的动点, ( http: / / www.21cnjy.com )在轴上是否存在点,使、、、四个点为顶点的四边形是平行四边形?如果存在,写出所有满足条件的点坐标(请直接写出点的坐标,不要求写过程);如果不存在,请说明理由.21*cnjy*com
【答案】(1),,。(2)。(3),,,.
【解析】(1)令y=0,解得x1=-1或x2=3,
∴A(-1,0)B(3,0),
将C点的横坐标x=2代入y=x2-2x-3得y=-3,
∴C(2,-3),
∴直线AC的函数解析式是y=-x-1;
(2)设P点的横坐标为x(-1≤x≤2),
则P、E的坐标分别为:P(x,-x-1),
E(x,x2-2x-3),
∵P点在E点的上方,PE=(-x-1)-(x2-2x-3)=-x2+x+2=-(x-)2+,
∴当x=时,PE的最大值=;
(3)存在4个这样的点,分别是,,,.
①如图1,
( http: / / www.21cnjy.com / )
连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(-3,0);
②如图2,
( http: / / www.21cnjy.com / )
AF=CG=2,A点的坐标为(-1,0),因此F点的坐标为(1,0);
③如图3,
( http: / / www.21cnjy.com / )
此时C,G两点的纵坐标互为相反数,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1+,3),
设直线GF的解析式为y=-x+h,
将G点代入后可得出直线的解析式为y=-x+4+,
因此直线GF与x轴的交点F的坐标为(4+,0);
④如图4,
( http: / / www.21cnjy.com / )
同③可求出F的坐标为(4-,0).
总之,符合条件的F点共有4个.
9、如图,已知二次函数的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0(1)求a的值和直线AB的解析式;
(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;
(3)点H是该二次函数图象上位于第 ( http: / / www.21cnjy.com )一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且周长取最大值时,求点G的坐标.
( http: / / www.21cnjy.com / )
【答案】(1);(2);(3)或.
【解析】解:(1)把点代入,得
解得
函数解析式为:
设直线解析式为
把,代入
解得
直线解析式为:
(2)由已知,
点坐标为
点坐标为
轴
,
解得,(舍去)
故值为
(3)如图,过点做于点
( http: / / www.21cnjy.com / )
由(2)
同理
四边形是平行四边形
整理得:
,即
由已知
周长
时,最大.
点坐标为,,此时点坐标为,
当点、位置对调时,依然满足条件
点坐标为,或,
10、如图,在平面直角坐标系中,抛 ( http: / / www.21cnjy.com )物线y=ax2+bx﹣3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C,顶点是D,对称轴交x轴于点E.21·cn·jy·com
( http: / / www.21cnjy.com / )
(1)求抛物线的解析式;
(2)点P是抛物线在第四象限内的一点,过点P作PQ∥y轴,交直线AC于点Q,设点P的横坐标是m.
①求线段PQ的长度n关于m的函数关系式;
②连接AP,CP,求当△ACP面积为时点P的坐标;
(3)若点N是抛物线对称轴上一点,则 ( http: / / www.21cnjy.com )抛物线上是否存在点M,使得以点B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出线段BN的长度;若不存在,请说明理由.21·世纪*教育网
【答案】(1)y=x2﹣2x﹣3;(2)①n=m2+m;②P(,﹣);(3)存在,BN=2或2或2
【解析】
(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),
故﹣3a=﹣3,解得:a=1,
故抛物线的表达式为:y=x2﹣2x﹣3;
(2)设点P(m,m2﹣2m﹣3),
①将点A、C的坐标代入一次函数表达式并解得:
直线AC的表达式为:y=﹣3x﹣3,则点Q(m,﹣3m﹣3),
n=PQ=m2﹣2m﹣3+3m+3=m2+m;
②连接AP交y轴于点H,
( http: / / www.21cnjy.com / )
同理可得:直线AP的表达式为:y=(m﹣3)x+m﹣3,
则OH=3﹣m,则CH=m,
△ACP面积=×CH×(xP﹣xA)=m(m+1)=,
解得:m=(不合题意的值已舍去),
故点P(,﹣);
(3)点C(0,﹣3),点B(3,0),设点P(m,n),n=m2﹣2m﹣3,点N(1,s),
①当BC是边时,
点C向右平移3个单位向上平移3个单位得到B,
同样点M(N)向右平移3个单位向上平移3个单位得到N(M),
即1±3=m,s±3=n,
解得:m=4或﹣2,s=2或0,
故点N(1,2)或(1,0),则BN=2或2;
②当BC是对角线时,
由中点公式得:3=m+1,3=s+n,
解得:s=6,故点N(1,6),则BN=2,
综上,BN=2或2或2.
11、如图,直线y=﹣2x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.
(1)求抛物线的解析式;
(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?2-1-c-n-j-y
(3)在(2)的结论下,过点E作y轴的平行 ( http: / / www.21cnjy.com )线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【来源:21cnj*y.co*m】
( http: / / www.21cnjy.com / )
【答案】(1)y=﹣2x2+x+3; ( http: / / www.21cnjy.com )(2)点E的坐标是(,)时,△BEC的面积最大,最大面积是;(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣,﹣3)或(2,﹣3)或(﹣,2).【出处:21教育名师】
【解析】(1)∵直线y=﹣2x+3与x轴交于点C,与y轴交于点B,
∴点B的坐标是(0,3),点C的坐标是(,0),
∵抛物线y=ax2+x+c经过B、C两点,
∴,
解得,
∴抛物线的解析式为:y=﹣2x2+x+3;
(2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,
∵点E是直线BC上方抛物线上的一动点,
∴设点E的坐标是(x,﹣2x2+x+3),
则点M的坐标是(x,﹣2x+3),
∴EM=﹣2x2+x+3﹣(﹣2x+3)=﹣2x2+3x,
∴S△BEC=S△BEM+S△MEC
=EM OC
=×(﹣2x2+3x)×
=﹣(x﹣)2+,
∴当x=时,即点E的坐标是(,)时,△BEC的面积最大,最大面积是;
(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,
①如图2,AM∥PQ,AM=PQ.
由(2),可得点M的横坐标是,
∵点M在直线y=﹣2x+3上,
∴点M的坐标是(,),
又∵抛物线y=﹣2x2+x+3的对称轴是x=,
∴设点P的坐标是(x,﹣2x2+x+3),
∵点A的坐标是(﹣1,0),
∴xP﹣xA=xQ﹣xM,x﹣(﹣1)=﹣,
解得x=﹣,
此时P(﹣,﹣3);
②如图3,由(2)知,可得点M的横坐标是,
∵点M在直线y=﹣2x+3上,
∴点M的坐标是(,),
又∵抛物线y=﹣2x2+x+3的对称轴是x=,
∴设点P的坐标是(x,﹣2x2+x+3),点Q的横坐标是,
∵点A的坐标是(﹣1,0),
∴xQ﹣xA=xP﹣xM,即﹣(﹣1)=x﹣,
解得x=2,
此时P(2,﹣3);
③如图4,由(2)知,可得点M的横坐标是,
∵点M在直线y=﹣2x+3上,
∴点M的坐标是(,),
又∵抛物线y=﹣2x2+x+3的对称轴是x=,
∴设点P的坐标是(x,﹣2x2+x+3),点Q的横坐标是,
∵点A的坐标是(﹣1,0),
∴xP﹣xA=xM﹣xQ,即x﹣(﹣1)=﹣,
解得x=﹣,
此时P(﹣,2);
综上所述,在抛物线上存在点P,使得以P ( http: / / www.21cnjy.com )、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣,﹣3)或(2,﹣3)或(﹣,2).21世纪教育网版权所有
( http: / / www.21cnjy.com / ) ( http: / / www.21cnjy.com / ) ( http: / / www.21cnjy.com / ) ( http: / / www.21cnjy.com / )
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)