2021—2022学年北师大版数学九年级下册第二章二次函数——二次函数综合探究——最值问题及存在性问题课时对应练习(Word版含答案)

文档属性

名称 2021—2022学年北师大版数学九年级下册第二章二次函数——二次函数综合探究——最值问题及存在性问题课时对应练习(Word版含答案)
格式 docx
文件大小 136.7KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2022-03-15 16:42:56

图片预览

文档简介

第13课时 二次函数综合探究——最值问题及存在性问题
1.已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.
(1)求y1的解析式;
(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.
2.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0)、B(3,0)、C(0,3).
(1)试求出抛物线的解析式;
(2)问:在抛物线的对称轴上是否存在一个点Q,使得△QAC的周长最小,试求出△QAC的周长的最小值,并求出点Q的坐标;
(3)现有一个动点P从抛物线的顶点T出发,在对称轴上以1个单位长度每秒的速度向y轴的正方向运动,试问,经过几秒后,△PAC是等腰三角形?
3.如图,抛物线y=x2﹣2x﹣3与直线y=﹣x+b交于A,C两点,与x轴交于点A,B.点P为直线AC下方抛物线上的一个动点(不包括点A和点C),过点P作PN⊥AB交AC与点M,垂足为N,连接AP,CP.设点P的横坐标为m.
(1)求b的值;
(2)用含m的代数式表示线段PM的长并写出m的取值范围;
(3)求△PAC的面积S关于m的函数解析式,并求使得△APC面积最大时,点P的坐标;
(4)直接写出当△CMP为等腰三角形时点P的坐标.
4.已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且2,
(1)求抛物线的解析式.
(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.
(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.
5.如图,抛物线y=ax2+bx+4与x轴交于A(﹣2,0),D两点,与y轴交于点C,对称轴x=3交x轴交于点B.
(1)求抛物线的解析式.
(2)点M是x轴上方抛物线上一动点,过点M作MN⊥x轴于点N,交直线BC于点E.设点M的横坐标为m,用含m的代数式表示线段ME的长,并求出线段ME长的最大值.
(3)若点P在y轴的正半轴上,连接PA,过点P作PA垂线,交抛物线的对称轴于点Q.是否存在点P,使以点P、A、Q为顶点的三角形与△BAQ全等?若存在,直接写出点P的坐标;若不存在,请说明理由.
6.(2019 广州)已知抛物线G:y=mx2﹣2mx﹣3有最低点.
(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);
(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;
(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.
7.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B
(1)求m的取值范围;
(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;
(3)当m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.
8.已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1 x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.
(1)求点C的坐标;
(2)当y1随着x的增大而增大时,求自变量x的取值范围;
(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.
【参考答案】
1.(1)∵抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.
∴B(﹣1,1)或(﹣1,9),
∴1,1或9,
解得m=﹣2,n=0或8,
∴y1的解析式为y1=﹣x2﹣2x或y1=﹣x2﹣2x+8;
(2)①当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴交点是(0,0)和(﹣2,0),
∵y1的对称轴与y2交于点A(﹣1,5),
∴y1与y2都经过x轴上的同一点(﹣2,0),
把(﹣1,5),(﹣2,0)代入得,
解得,
∴y2=5x+10.
②当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0得x=﹣4或2,
∵y2随着x的增大而增大,且过点A(﹣1,5),
∴y1与y2都经过x轴上的同一点(﹣4,0),
把(﹣1,5),(﹣4,0)代入得,
解得;
∴y2x.
2.(1)∵抛物线y=ax2+bx+c(a≠0)经过点A(1,0)、B(3,0)、C(0,3),
∴把此三点代入得,
解得,
故抛物线的解析式为,y=x2﹣4x+3;
(2)点A关于对称轴的对称点即为点B,
连接B、C,交x=2于点Q,
可得直线BC:
y=﹣x+3,与对称轴交点Q(2,1),BC,
可得△QAC周长为3.
(3)设t秒后△PAC是等腰三角形,
因为P在对称轴上,
所以P点坐标为(2,t﹣1)于是
①当PA=CA时;根据勾股定理得:(2﹣1)2+(t﹣1)2=12+32;
解得t=4秒或t=﹣2秒(负值舍去).
②PC=PA时;根据勾股定理得:22+(t﹣4)2=(2﹣1)2+(t﹣1)2;
解得t=3秒;
③CP=CA时;根据勾股定理得:22+(t﹣4)2=12+32;
解得t=(4)秒或t=(4)秒
所以经过4秒,或3秒,或4秒,或4秒时,△PAC是等腰三角形.
3.(1)令x2﹣2x﹣3=0,
解得:x1=﹣1,x2=3,
即A=(﹣1,0),B(3,0),
把A(﹣1,0)代入y=﹣x+b,得b=﹣1,
则一次函数解析式为y=﹣x﹣1;
(2)把x=m代入抛物线解析式得:y=m2﹣2m﹣3,
把x=m代入直线解析式得:y=﹣m﹣1,
∴NP=﹣(m2﹣2m﹣3),MN=﹣(﹣m﹣1),
∴MP=NP﹣NM=﹣(m2﹣2m﹣3)+(﹣m﹣1)=﹣m2+m+2,
m的取值范围是﹣1<m<2;
(3)过点作CE⊥AB于点E,
则S△APC=S△AMP+S△CMPMP ANMP NEMP AEm2m+3,
∵﹣1<0,开口向下,
∴当m时,S△APC面积最大,
此时P(,);
(4)分三种情况:①当P为抛物线顶点时,
此时MC=PC,△CMP为等腰三角形,
P点坐标为P1(1,﹣4);
②当P为C关于抛物线对称轴对称的点时,
此时MP=MC时,△CMP为等腰三角形,
∵点C(2,﹣3),对称轴为:x=1,
∴点P坐标为P2(0,﹣3);
③当P为MC的垂直平分线上点时,
此时PM=PC,△CMP为等腰三角形,
P3(1,2﹣4).
4.(1)由题意可得:α,β是方程﹣mx2+4x+2m=0的两根,由根与系数的关系可得,
α+β,αβ=﹣2,
∵2,
∴2,即2,
解得:m=1,
故抛物线解析式为:y=﹣x2+4x+2;
(2)存在x轴上的点M,y轴上的点N,使得四边形DNME的周长最小,
∵y=﹣x2+4x+2=﹣(x﹣2)2+6,
∴抛物线的对称轴l为x=2,顶点D的坐标为:(2,6),
又∵抛物线与y轴交点C的坐标为:(0,2),点E与点C关于l对称,
∴E点坐标为:(4,2),
作点D关于y轴的对称点D′,点E关于x轴的对称点E′,
则D′的坐标为;(﹣2,6),E′坐标为:(4,﹣2),
连接D′E′,交x轴于M,交y轴于N,
此时,四边形DNME的周长最小为:D′E′+DE,如图1所示:
延长E′E,′D交于一点F,在Rt△D′E′F中,D′F=6,E′F=8,
则D′E′10,
设对称轴l与CE交于点G,在Rt△DGE中,DG=4,EG=2,
∴DE2,
∴四边形DNME的周长最小值为:10+2;
(3)如图2,P为抛物线上的点,过点P作PH⊥x轴,垂足为H,
若以点D、E、P、Q为顶点的四边形为平行四边形,则△PHQ≌△DGE,
∴PH=DG=4,∴|y|=4,
∴当y=4时,﹣x2+4x+2=4,
解得:x1=2,x2=2,
当y=﹣4时,﹣x2+4x+2=﹣4,
解得:x3=2,x4=2,
无法得出以DE为对角线的平行四边形,
故P点的坐标为;(2,4),(2,4),(2,﹣4),(2,﹣4).
5.(1)由题意得,点D的坐标为(8,0),
把点A、D的坐标代入y=ax2+bx+4,
解.
故抛物线解析式为yx2x+4.
(2)由题意,点C,点B坐标分别为(0,4),(3,0),
则直线CB解析式yx+4,
点M坐标为(m,m2m+4),点E坐标为(m,m+4),
①当﹣2<m≤0时,
MEm+4﹣(m2m+4)m2m,
m=﹣2时,ME,
由二次函数性质可知,ME;
②当0<m<8时,
MEm2m+4﹣(m+4)m2m(m)2
当m时,ME取得最大值,最大值为.
综上所述,当﹣2<m≤0时,MEm2m,当0<m<8时,MEm2m.
当m时,ME取得最大值,最大值为.
(3)存在,
∵PA⊥PQ,BQ⊥x轴
∴∠APQ=∠ABQ=90°,
∴△APQ和△ABQ中.点P和点B是对应点,
∵以点P、A、Q为顶点的三角形与△BAQ全等,
只有两种情况:
设点P(0,c),Q(3,n)(c>0),
∴AB=5,BQ=n,PA,PQ,
①△PAQ≌△BAQ,
∴PA=BA,PQ=BQ,
∴5,n,
∴c或c(舍),
∴P(0,),
②△PQA≌△BAQ,
∴PA=BQ,PQ=AB,
∴n,5,
∴c1,n1或c2,n2(舍)
故点P坐标为P1(0,),P2(0,).
6.(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点
∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3
(2)∵抛物线G:y=m(x﹣1)2﹣m﹣3
∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3
∴抛物线G1顶点坐标为(m+1,﹣m﹣3)
∴x=m+1,y=﹣m﹣3
∴x+y=m+1﹣m﹣3=﹣2
即x+y=﹣2,变形得y=﹣x﹣2
∵m>0,m=x﹣1
∴x﹣1>0
∴x>1
∴y与x的函数关系式为y=﹣x﹣2(x>1)
(3)法一:如图,函数H:y=﹣x﹣2(x>1)图象为射线
x=1时,y=﹣1﹣2=﹣3;x=2时,y=﹣2﹣2=﹣4
∴函数H的图象恒过点B(2,﹣4)
∵抛物线G:y=m(x﹣1)2﹣m﹣3
x=1时,y=﹣m﹣3;x=2时,y=m﹣m﹣3=﹣3
∴抛物线G恒过点A(2,﹣3)
由图象可知,若抛物线与函数H的图象有交点P,则yB<yP<yA
∴点P纵坐标的取值范围为﹣4<yP<﹣3
法二:
整理的:m(x2﹣2x)=1﹣x
∵x>1,且x=2时,方程为0=﹣1不成立
∴x≠2,即x2﹣2x=x(x﹣2)≠0
∴m0
∵x>1
∴1﹣x<0
∴x(x﹣2)<0
∴x﹣2<0
∴x<2即1<x<2
∵yP=﹣x﹣2
∴﹣4<yP<﹣3
7.(1)解:当m=0时,函数为一次函数,不符合题意,舍去;
当m≠0时,
∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,
∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,
∴1﹣4m≠0,
∴m,
∴m的取值范围为m≠0且m;
(2)证明:∵抛物线y=mx2+(1﹣2m)x+1﹣3m,
∴y=m(x2﹣2x﹣3)+x+1,
抛物线过定点说明在这一点y与m无关,
显然当x2﹣2x﹣3=0时,y与m无关,
解得:x=3或x=﹣1,
当x=3时,y=4,定点坐标为(3,4);
当x=﹣1时,y=0,定点坐标为(﹣1,0),
∵P不在坐标轴上,
∴P(3,4);
(3)解:|AB|=|xA﹣xB|||=|4|,
∵m≤8,
∴4,
∴4<0,
∴0<|4|,
∴|AB|最大时,||,
解得:m=8,或m(舍去),
∴当m=8时,|AB|有最大值,
此时△ABP的面积最大,没有最小值,
则面积最大为:|AB|yP4.
8.(1)令x=0,则y=c,
故C(0,c),
∵OC的距离为3,
∴|c|=3,即c=±3,
∴C(0,3)或(0,﹣3);
(2)∵x1x2<0,
∴x1,x2异号,
①若C(0,3),即c=3,
把C(0,3)代入y2=﹣3x+t,则0+t=3,即t=3,
∴y2=﹣3x+3,
把A(x1,0)代入y2=﹣3x+3,则﹣3x1+3=0,
即x1=1,
∴A(1,0),
∵x1,x2异号,x1=1>0,∴x2<0,
∵|x1|+|x2|=4,
∴1﹣x2=4,
解得:x2=﹣3,则B(﹣3,0),
代入y1=ax2+bx+3得,,
解得:,
∴y1=﹣x2﹣2x+3=﹣(x+1)2+4,
则当x≤﹣1时,y随x增大而增大.
②若C(0,﹣3),即c=﹣3,
把C(0,﹣3)代入y2=﹣3x+t,则0+t=﹣3,即t=﹣3,
∴y2=﹣3x﹣3,
把A(x1,0),代入y2=﹣3x﹣3,
则﹣3x1﹣3=0,
即x1=﹣1,
∴A(﹣1,0),
∵x1,x2异号,x1=﹣1<0,∴x2>0
∵|x1|+|x2|=4,
∴1+x2=4,
解得:x2=3,则B(3,0),
代入y1=ax2+bx﹣3得,,
解得:,
∴y1=x2﹣2x﹣3=(x﹣1)2﹣4,
则当x≥1时,y随x增大而增大,
综上所述,若c=3,当y随x增大而增大时,x≤﹣1;
若c=﹣3,当y随x增大而增大时,x≥1;
(3)①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,
y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,
则当x≤﹣1﹣n时,y随x增大而增大,
y2向下平移n个单位后,则解析式为:y4=﹣3x+3﹣n,
要使平移后直线与P有公共点,则当x=﹣1﹣n,y3≥y4,
即﹣(﹣1﹣n+1+n)2+4≥﹣3(﹣1﹣n)+3﹣n,
解得:n≤﹣1,
∵n>0,∴n≤﹣1不符合条件,应舍去;
②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,
y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,
则当x≥1﹣n时,y随x增大而增大,
y2向下平移n个单位后,则解析式为:y4=﹣3x﹣3﹣n,
要使平移后直线与P有公共点,则当x=1﹣n,y3≤y4,
即(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,
解得:n≥1,
综上所述:n≥1,
2n2﹣5n=2(n)2,
∴当n时,2n2﹣5n的最小值为:.
第14页(共14页)