中小学教育资源及组卷应用平台
2021-2022学年下学期上海初中数学九年级期中典型试卷2
一.选择题(共6小题)
1.(2021春 金山区校级月考)下列实数中,是有理数的为( )
A. B. C.π D.
2.(2015 上海)当a>0时,下列关于幂的运算正确的是( )
A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.a=
3.(2018 上海)下列对二次函数y=x2﹣x的图象的描述,正确的是( )
A.开口向下
B.对称轴是y轴
C.经过原点
D.在对称轴右侧部分是下降的
4.(2017 静安区二模)一次数学作业共有10道题目,某小组8位学生做对题目数的情况如下表:
做对题目数 6 7 8 9 10
人数 1 1 2 3 1
那么这8位学生做对题目数的众数和中位数分别是( )
A.9和8 B.9和8.5 C.3和2 D.3和1
5.(2021 普陀区二模)如图,在平面直角坐标系中,△ABC的顶点A、B均在y轴上,点C在x轴上,将△ABC绕着顶点B旋转后,点C的对应点C′落在y轴上,点A的对应点A′落在反比例函数y=在第一象限的图象上.如果点B、C的坐标分别是(0,﹣4)、(﹣2,0),那么点A′的坐标是( )
A.(3,2) B.(,4) C.(2,3) D.(4,)
6.(2021 普陀区二模)已知在△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,下列条件中,不一定能得到△ABC≌△A′B′C′的是( )
A.BC=B′C′ B.∠A=∠A′ C.∠C=∠C′ D.∠B=∠B′=90°
二.填空题(共12小题)
7.(2021 嘉定区二模)化简:= .
8.(2021 嘉定区二模)计算:(x+1) (x﹣2)= .
9.(2021 浦东新区模拟)如果关于x的方程mx2﹣mx+1=0有两个相等的实数根,那么实数m的值是 .
10.(2021 浦东新区模拟)已知函数f(x)=,那么f(﹣)= .
11.(2015 上海)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是 ℉.
12.(2015 上海)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是 .
13.(2018 上海)从,π,这三个数中选一个数,选出的这个数是无理数的概率为 .
14.(2021春 黄浦区校级月考)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(﹣1,0),那么y的值随着x的增大而 .(填“增大”或“减小”)
15.(2021 普陀区二模)如图,两条平行线l1、l2分别经过正五边形ABCDE的顶点B、C.如果∠1=20°,那么∠2= .
16.(2021 普陀区二模)如图,已知△ABC中,D、E分别为边AB、AC的中点,点F在DE的延长线上,EF=DE,设,那么向量用向量、表示是 .
17.(2021 嘉定区二模)已知直角三角形的直角边长为a、b,斜边长为c,将满足a2+b2=c2的一组正整数称为“勾股数组”,记为(a,b,c),其中a≤b<c.事实上,早在公元前十一世纪,中国古代数学家商高就发现了“勾三、股四、弦五”,我们将其简记为(3,4,5).类似的勾股数组还有很多….例如:(5,12,13),(7,24,25),(9,40,41),(11,60,61),(13,84,85),….如果a=2n+1(n为正整数),那么b+c= .(用含n的代数式表示)
18.(2021 嘉定区二模)在矩形ABCD中,AB=6,BC=4(如图),点E是边AB的中点,联结DE.将△DAE沿直线DE翻折,点A的对应点为A',那么点A'到直线BC的距离为 .
三.解答题(共7小题)
19.(2021 浦东新区模拟)计算:+|﹣|﹣﹣3.
20.(2021 浦东新区模拟)解分式方程:.
21.(2015 上海)已知:如图,在平面直角坐标系xOy中,正比例函数y=x的图象经过点A,点A的纵坐标为4,反比例函数y=的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:
(1)这个反比例函数的解析式;
(2)直线AB的表达式.
22.(2015 上海)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.
(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?
(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:≈1.7)
23.(2018 虹口区二模)如图,四边形ABCD是矩形,E是对角线AC上的一点,EB=ED且∠ABE=∠ADE.
(1)求证:四边形ABCD是正方形;
(2)延长DE交BC于点F,交AB的延长线于点G,求证:EF AG=BC BE.
24.(2017 上海)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.
(1)求这条抛物线的表达式和点B的坐标;
(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;
(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.
25.(2021 普陀区二模)在梯形ABCD中,AD∥BC,AB⊥BC,AD=3,CD=5,cosC=(如图).M是边BC上一个动点(不与点B、C重合),以点M为圆心,CM为半径作圆,⊙M与射线CD、射线MA分别相交于点E、F.
(1)设CE=,求证:四边形AMCD是平行四边形;
(2)联结EM,设∠FMB=∠EMC,求CE的长;
(3)以点D为圆心,DA为半径作圆,⊙D与⊙M的公共弦恰好经过梯形的一个顶点,求此时⊙M的半径长.
2021-2022学年下学期上海初中数学九年级期中典型试卷2
参考答案与试题解析
一.选择题(共6小题)
1.(2021春 金山区校级月考)下列实数中,是有理数的为( )
A. B. C.π D.
【考点】实数.
【专题】实数;应用意识.
【分析】根据有理数的定义即可判断.
【解答】解:A、,故不符合题意.
B、是无理数,故不符合题意.
C、π是无理数,故不符合题意.
D、是有理数,故符合题意.
故选:D.
【点评】本题考查有理数和无理数的定义,掌握好定义是关键,属于基础题.
2.(2015 上海)当a>0时,下列关于幂的运算正确的是( )
A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.a=
【考点】负整数指数幂;有理数的乘方;分数指数幂;零指数幂.
【分析】分别利用零指数幂的性质以及负指数幂的性质和分数指数幂的性质分别分析求出即可.
【解答】解:A、a0=1(a>0),正确;
B、a﹣1=,故此选项错误;
C、(﹣a)2=a2,故此选项错误;
D、a=(a>0),故此选项错误.
故选:A.
【点评】此题主要考查了零指数幂的性质以及负指数幂的性质和分数指数幂的性质等知识,正确把握相关性质是解题关键.
3.(2018 上海)下列对二次函数y=x2﹣x的图象的描述,正确的是( )
A.开口向下
B.对称轴是y轴
C.经过原点
D.在对称轴右侧部分是下降的
【考点】二次函数的性质;二次函数的图象.
【专题】二次函数图象及其性质.
【分析】A、由a=1>0,可得出抛物线开口向上,选项A不正确;
B、根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;
C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;
D、由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x>时,y随x值的增大而增大,选项D不正确.
综上即可得出结论.
【解答】解:A、∵a=1>0,
∴抛物线开口向上,选项A不正确;
B、∵﹣=,
∴抛物线的对称轴为直线x=,选项B不正确;
C、当x=0时,y=x2﹣x=0,
∴抛物线经过原点,选项C正确;
D、∵a>0,抛物线的对称轴为直线x=,
∴当x>时,y随x值的增大而增大,选项D不正确.
故选:C.
【点评】本题考查了二次函数的性质以及二次函数的图象,利用二次函数的性质逐一分析四个选项的正误是解题的关键.
4.(2017 静安区二模)一次数学作业共有10道题目,某小组8位学生做对题目数的情况如下表:
做对题目数 6 7 8 9 10
人数 1 1 2 3 1
那么这8位学生做对题目数的众数和中位数分别是( )
A.9和8 B.9和8.5 C.3和2 D.3和1
【考点】众数;中位数.
【分析】根据众数和中位数的定义分别进行解答即可.
【解答】解:根据图表可得:9出现了3次,出现的次数最多,则众数是9;
把这些数据从小到大排列,最中间的两个数是第4、5个数的平均数,
则这8位学生做对题目数的中位数是:=8.5;
故选:B.
【点评】此题考查了中位数和众数众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.
5.(2021 普陀区二模)如图,在平面直角坐标系中,△ABC的顶点A、B均在y轴上,点C在x轴上,将△ABC绕着顶点B旋转后,点C的对应点C′落在y轴上,点A的对应点A′落在反比例函数y=在第一象限的图象上.如果点B、C的坐标分别是(0,﹣4)、(﹣2,0),那么点A′的坐标是( )
A.(3,2) B.(,4) C.(2,3) D.(4,)
【考点】反比例函数图象上点的坐标特征;坐标与图形变化﹣旋转.
【专题】一次函数及其应用;反比例函数及其应用;运算能力.
【分析】根据题意求得D的坐标,然后根据待定系数法即可求得直线A′B的解析式,与反比例函数解析式联立,解方程组即可求得A′的坐标.
【解答】解:设A′B与x轴的交点为D,由题意可知D(2,0),
设直线A′B的解析式为y=kx﹣4,
把D(2,0)代入得0=2k﹣4,
解得k=2,
∴直线A′B的解析式为y=2x﹣4,
由解得或,
∴点A′的坐标是(3,2),
故选:A.
【点评】本题考查了旋转的性质,待定系数法求一次函数的解析式,反比例函数与一次函数的交点,求得直线A′B的解析式是解题的关键.
6.(2021 普陀区二模)已知在△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,下列条件中,不一定能得到△ABC≌△A′B′C′的是( )
A.BC=B′C′ B.∠A=∠A′ C.∠C=∠C′ D.∠B=∠B′=90°
【考点】全等三角形的判定.
【专题】图形的全等;推理能力.
【分析】根据全等三角形的判定定理进行推理.
【解答】解:A、由AB=A′B′,AC=A′C′,BC=B′C′可以判定△ABC≌△A′B′C′(SSS),不符合题意.
B、由AB=A′B′,AC=A′C′,∠A=∠A′可以判定△ABC≌△A′B′C′(SAS),不符合题意.
C、由AB=A′B′,AC=A′C′,∠C=∠C′不可以判定△ABC≌△A′B′C′(SSA),符合题意.
D、由AB=A′B′,AC=A′C′,∠B=∠B′=90°可以判定Rt△ABC≌Rt△A′B′C′(HL),不符合题意.
故选:C.
【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
二.填空题(共12小题)
7.(2021 嘉定区二模)化简:= .
【考点】实数的性质.
【分析】先比较1与的大小,再根据绝对值的定义即可求解.
【解答】解:=﹣1.
【点评】此题主要考查了求实数的绝对值,其中非负数的绝对值等于他本身,负数的绝对值等于它的相反数.
8.(2021 嘉定区二模)计算:(x+1) (x﹣2)= x2﹣x﹣2 .
【考点】多项式乘多项式.
【专题】计算题;整式;运算能力.
【分析】根据多项式乘法法则即可得到答案.
【解答】解:(x+1) (x﹣2)=x2﹣2x+x﹣2=x2﹣x﹣2,
故答案为:x2﹣x﹣2.
【点评】本题考查多项式乘以多项式,题目较容易,掌握多项式乘以多项式的法则是解题的关键.
9.(2021 浦东新区模拟)如果关于x的方程mx2﹣mx+1=0有两个相等的实数根,那么实数m的值是 4 .
【考点】根的判别式;一元二次方程的定义.
【分析】根据方程mx2﹣mx+1=0有两个相等的实数根,则根的判别式Δ=b2﹣4ac=0,列出m的方程,求出m的值即可.
【解答】解:∵关于x的方程mx2﹣mx+1=0有两个相等的实数根,
∴Δ=(﹣m)2﹣4×m=0,且m≠0,
解得m=4.
故答案是:4.
【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:
(1)Δ>0 方程有两个不相等的实数根;
(2)Δ=0 方程有两个相等的实数根;
(3)Δ<0 方程没有实数根.
10.(2021 浦东新区模拟)已知函数f(x)=,那么f(﹣)= .
【考点】函数值.
【专题】实数;函数及其图象;运算能力.
【分析】把x=3代入函数关系式,计算求值即可.
【解答】解:当x=﹣时,
f(﹣)====.
故答案为:.
【点评】本题考查了求函数值.题目比较简单,已知函数解析式时,求函数值就是求代数式的值.
11.(2015 上海)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是 77 ℉.
【考点】函数值.
【分析】把x的值代入函数关系式计算求出y值即可.
【解答】解:当x=25°时,
y=×25+32
=77,
故答案为:77.
【点评】本题考查的是求函数值,理解函数值的概念并正确代入准确计算是解题的关键.
12.(2015 上海)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是 y=x2+2x+3 .
【考点】二次函数图象与几何变换.
【分析】设平移后的抛物线解析式为y=x2+2x﹣1+b,把点A的坐标代入进行求值即可得到b的值.
【解答】解:设平移后的抛物线解析式为y=x2+2x﹣1+b,
把A(0,3)代入,得
3=﹣1+b,
解得b=4,
则该函数解析式为y=x2+2x+3.
故答案是:y=x2+2x+3.
【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.
13.(2018 上海)从,π,这三个数中选一个数,选出的这个数是无理数的概率为 .
【考点】概率公式;无理数.
【专题】常规题型;概率及其应用.
【分析】由题意可得共有3种等可能的结果,其中无理数有π、共2种情况,则可利用概率公式求解.
【解答】解:∵在,π,这三个数中,无理数有π,这2个,
∴选出的这个数是无理数的概率为,
故答案为:.
【点评】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.
14.(2021春 黄浦区校级月考)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(﹣1,0),那么y的值随着x的增大而 增大 .(填“增大”或“减小”)
【考点】一次函数图象上点的坐标特征;一次函数的性质.
【专题】一次函数及其应用;运算能力.
【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.
【解答】解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(﹣1,0),
∴0=﹣k+3,
∴k=3,
∴y的值随x的增大而增大.
故答案为:增大.
【点评】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.
15.(2021 普陀区二模)如图,两条平行线l1、l2分别经过正五边形ABCDE的顶点B、C.如果∠1=20°,那么∠2= 92° .
【考点】多边形内角与外角;平行线的性质.
【专题】线段、角、相交线与平行线;推理能力.
【分析】根据正五边形的内角和平行线的性质解答即可.
【解答】解:∵正五边形ABCDE的一个内角是108°,
∴∠3=108°﹣∠1=108°﹣20°=88°,
∵l1∥l2,∠3=88°,
∴∠2=180°﹣88°=92°,
故答案为:92°.
【点评】此题考查的知识点是平行线的性质及正多边形的性质,解题的关键是由正多边形的性质和已知得出答案.
16.(2021 普陀区二模)如图,已知△ABC中,D、E分别为边AB、AC的中点,点F在DE的延长线上,EF=DE,设,那么向量用向量、表示是 2﹣ .
【考点】*平面向量;三角形中位线定理.
【专题】三角形;应用意识.
【分析】根据三角形中位线定理和已知条件求得EF=BC;然后在△AEF中,利用三角形法则得到;最后易得=2.
【解答】解:如图,在△ABC中,D、E分别为边AB、AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,且DE=BC.
∵=,
∴=.
又∵EF=DE,
∴==.
∵=,
∴=﹣.
∵点E是AC的中点,
∴=2=2(﹣)=2(﹣)=2﹣.
故答案是:2﹣.
【点评】本题考查三角形中位线定理,平面向量等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.
17.(2021 嘉定区二模)已知直角三角形的直角边长为a、b,斜边长为c,将满足a2+b2=c2的一组正整数称为“勾股数组”,记为(a,b,c),其中a≤b<c.事实上,早在公元前十一世纪,中国古代数学家商高就发现了“勾三、股四、弦五”,我们将其简记为(3,4,5).类似的勾股数组还有很多….例如:(5,12,13),(7,24,25),(9,40,41),(11,60,61),(13,84,85),….如果a=2n+1(n为正整数),那么b+c= 4n2+4n+1 .(用含n的代数式表示)
【考点】勾股数;数学常识;列代数式;规律型:图形的变化类.
【专题】计算题;方程思想;运算能力;应用意识.
【分析】“勾股数组”(a,b,c),当a为奇数时,c=b+1,列方程即可得到答案.
【解答】解:方法1:观察“勾股数组”(a,b,c),当a为奇数时,c=b+1,
又a=2n+1(n为正整数),
由勾股定理可得:c2﹣b2=(2n+1)2,即(b+1)2﹣b2=(2n+1)2,
解得b=2n2+2n,
∴c=2n2+2n+1,
∴b+c=4n2+4n+1,
故答案为:4n2+4n+1.
方法2:观察“勾股数组”(a,b,c),当a为大于1的正奇数时,有如下规律:32=4+5,52=12+13,72=24+25,…,a2=b+c,
∴当a=2n+1时,b+c=(2n+1)2.
【点评】本题考查“勾股数组”,观察“勾股数组”特点得到c=b+1是解题的关键.
18.(2021 嘉定区二模)在矩形ABCD中,AB=6,BC=4(如图),点E是边AB的中点,联结DE.将△DAE沿直线DE翻折,点A的对应点为A',那么点A'到直线BC的距离为 .
【考点】翻折变换(折叠问题);矩形的性质.
【专题】方程思想;矩形 菱形 正方形;几何直观;应用意识.
【分析】过A′作FG∥BC交AB于F,交CD于G,过A′作A′H⊥BC于H,先证明△EFA′∽△A′GD得它们对应边的比为,再设EF=3m,FA′=3n,则A′G=4m,DG=4n,根据FA′+A′G=BC=4,AE+EF=DG,列方程即可得到答案.
【解答】解:过A′作FG∥BC交AB于F,交CD于G,过A′作A′H⊥BC于H,如图:
∵矩形ABCD中,AB=6,BC=4,E是边AB的中点
∴∠A=90°,AD=BC=4,CD=AB=6,AE=3,
∵△DAE沿直线DE翻折,点A的对应点为A',
∴∠DA′E=∠A=90°,A′D=AD=4,A′E=AE=3,
又FG∥BC,
∴∠A′DG=90°﹣∠DA′G=∠EA′F,
而∠EFA′=∠A′GD=90°,
∴△EFA′∽△A′GD,
∴=,
设EF=3m,FA′=3n,则A′G=4m,DG=4n,
∵FA′+A′G=BC=4,AE+EF=DG,
∴,解得n=,
∴DG=4n=,
∴CG=CD﹣DG=,
∴A′H=
故答案为:.
【点评】本题考查矩形中的翻折问题,构造相似三角形列方程是解题的关键.
三.解答题(共7小题)
19.(2021 浦东新区模拟)计算:+|﹣|﹣﹣3.
【考点】分数指数幂;实数的性质.
【专题】实数;运算能力.
【分析】直接利用二次根式的性质以及分数指数幂的性质分别化简得出答案.
【解答】解:原式=2+﹣﹣(+1)﹣
=2+﹣﹣﹣1﹣
=﹣1.
【点评】此题主要考查了分数指数幂的性质以及二次根式的性质,正确化简各数是解题关键.
20.(2021 浦东新区模拟)解分式方程:.
【考点】解分式方程.
【专题】计算题.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:去分母得:(x+2)2﹣16=x﹣2,
整理得:x2+3x﹣10=0,即(x﹣2)(x+5)=0,
解得:x=2或x=﹣5,
经检验x=2是增根,分式方程的解为x=﹣5.
【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
21.(2015 上海)已知:如图,在平面直角坐标系xOy中,正比例函数y=x的图象经过点A,点A的纵坐标为4,反比例函数y=的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:
(1)这个反比例函数的解析式;
(2)直线AB的表达式.
【考点】反比例函数与一次函数的交点问题.
【分析】(1)根据正比例函数y=x的图象经过点A,点A的纵坐标为4,求出点A的坐标,根据反比例函数y=的图象经过点A,求出m的值;
(2)根据点A的坐标和等腰三角形的性质求出点B的坐标,运用待定系数法求出直线AB的表达式.
【解答】解:∵正比例函数y=x的图象经过点A,点A的纵坐标为4,
∴点A的坐标为(3,4),
∵反比例函数y=的图象经过点A,
∴m=12,
∴反比例函数的解析式为:y=;
(2)如图,连接AC、AB,作AD⊥BC于D,
∵AC=AB,AD⊥BC,
∴BC=2CD=6,
∴点B的坐标为:(6,2),
设直线AB的表达式为:y=kx+b,
由题意得,,
解得,,
∴直线AB的表达式为:y=﹣x+6.
【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式和一次函数与反比例函数的交点的求法,注意数形结合的思想在解题中的应用.
22.(2015 上海)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.
(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?
(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:≈1.7)
【考点】解直角三角形的应用;勾股定理的应用.
【分析】(1)连接PA.在直角△PAH中利用勾股定理来求PH的长度;
(2)由题意知,隔音板的长度是PQ的长度.通过解Rt△ADH、Rt△CDQ分别求得DH、DQ的长度,然后结合图形得到:PQ=PH+DQ﹣DH,把相关线段的长度代入求值即可.
【解答】解:(1)如图,连接PA.由题意知,AP=39m.在直角△APH中,PH===36(米);
(2)由题意知,隔音板的长度是PQ的长度.
在Rt△ADH中,DH=AH cot30°=15(米).
在Rt△CDQ中,DQ===78(米).
则PQ=PH+HQ=PH+DQ﹣DH=36+78﹣15≈114﹣15×1.7=88.5≈89(米).
答:高架道路旁安装的隔音板至少约需要89米.
【点评】本题考查了解直角三角形的应用、勾股定理的应用.根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.
23.(2018 虹口区二模)如图,四边形ABCD是矩形,E是对角线AC上的一点,EB=ED且∠ABE=∠ADE.
(1)求证:四边形ABCD是正方形;
(2)延长DE交BC于点F,交AB的延长线于点G,求证:EF AG=BC BE.
【考点】相似三角形的判定与性质;矩形的性质;正方形的判定与性质.
【专题】几何综合题.
【分析】(1)根据邻边相等的矩形是正方形即可证明;
(2)由AD∥BC,推出,同理 ,由DE=BE,四边形ABCD是正方形,推出BC=DC,可得解决问题;
【解答】(1)证明:连接BD.
∵EB=ED,
∴∠EBD=∠EDB,
∵∠ABE=∠ADE,
∴∠ABD=∠ADB,
∴AB=AD,
∵四边形ABCD是矩形,
∴四边形ABCD是正方形.
(2)证明:∵四边形ABCD是矩形
∴AD∥BC,
∴,
同理 ,
∵DE=BE,四边形ABCD是正方形,
∴BC=DC,
∴,
∴EF AG=BC BE.
【点评】本题考查相似三角形的判定和性质、矩形的性质、正方形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
24.(2017 上海)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.
(1)求这条抛物线的表达式和点B的坐标;
(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;
(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.
【考点】二次函数综合题.
【分析】(1)依据抛物线的对称轴方程可求得b的值,然后将点A的坐标代入y=﹣x2+2x+c可求得c的值;
(2)过点A作AC⊥BM,垂足为C,从而可得到AC=1,MC=m﹣2,最后利用锐角三角函数的定义求解即可;
(3)由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此QP=3,然后由点QO=PO,QP∥y轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.
【解答】解:(1)∵抛物线的对称轴为x=1,
∴x=﹣=1,即=1,解得b=2.
∴y=﹣x2+2x+c.
将A(2,2)代入得:﹣4+4+c=2,解得:c=2.
∴抛物线的解析式为y=﹣x2+2x+2.
配方得:y=﹣(x﹣1)2+3.
∴抛物线的顶点坐标为(1,3).
(2)如图所示:过点A作AG⊥BM,垂足为G,则AG=1,G(1,2).
∵M(1,m),G(1,2),
∴MG=m﹣2.
∴cot∠AMB==m﹣2.
(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,
∴抛物线向下平移了3个单位.
∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.
∵OP=OQ,
∴点O在PQ的垂直平分线上.
又∵QP∥y轴,
∴点Q与点P关于x轴对称.
∴点Q的纵坐标为﹣.
将y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x=或x=.
∴点Q的坐标为(,﹣)或(,﹣).
【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、锐角三角函数的定义、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.
25.(2021 普陀区二模)在梯形ABCD中,AD∥BC,AB⊥BC,AD=3,CD=5,cosC=(如图).M是边BC上一个动点(不与点B、C重合),以点M为圆心,CM为半径作圆,⊙M与射线CD、射线MA分别相交于点E、F.
(1)设CE=,求证:四边形AMCD是平行四边形;
(2)联结EM,设∠FMB=∠EMC,求CE的长;
(3)以点D为圆心,DA为半径作圆,⊙D与⊙M的公共弦恰好经过梯形的一个顶点,求此时⊙M的半径长.
【考点】圆的综合题.
【专题】几何综合题;推理能力.
【分析】(1)如图1中,连接EM,过点M作MG⊥CD于G,则EG=CG=,通过计算证明AD=CM,可得结论.
(2)如图2中,过点E作EH⊥BC于H,过点M作MT⊥EC于T.由cosC==,设EC=6k,则CT=ET=3k,MC=ME=5k,在Rt△CEH中,EH=CE=k,CH=EC=k,想办法构建方程,求解即可.
(3)分两种情形:如图3﹣1中,当公共弦经过点A时,过点D作DP⊥BC于P,则四边形ABPD是矩形.如图3﹣2中,当公共弦经过点D时,连接MD,MP,过点M作MN⊥AD于N.分别求解即可.
【解答】(1)证明:如图1中,连接EM,过点M作MG⊥CD于G,则EG=CG=,
在Rt△CGM中,CM===3,
∴AD=CM,
∵AD∥CM,
∴四边形AMCD是平行四边形.
(2)解:如图2中,过点E作EH⊥BC于H,过点M作MT⊥EC于T.
∵ME=MC,MT⊥EC,
∴CT=ET,
∴cosC==,
设EC=6k,则CT=ET=3k,MC=ME=5k,
在Rt△CEH中,EH=CE=k,CH=EC=k,
∴MH=CM﹣CH=k,
∴tan∠EMH=,
∵∠FMB=∠EMC,
∴tan∠FMB===,
∴BM=,
∴CM=BC﹣BM==5k,
∴CE=6k=.
(3)如图3﹣1中,当公共弦经过点A时,过点D作DP⊥BC于P,则四边形ABPD是矩形.
∴AD=BP=3,
在Rt△CDP中,cosC==,
∵CD=5,
∴PC=3,AB=PD=4,
∴BC=3+3=6,
设CM=AM=x,
在Rt△ABM中,则有x2=42+(6﹣x)2,
解得x=,
∴⊙M的半径为.
如图3﹣2中,当公共弦经过点D时,连接MD,MP,过点M作MN⊥AD于N.
设CM=ME=MP=x,则DN=x﹣3,
∵DM2=MN2+DN2=MP2﹣DP2,
∴42+(x﹣3)2=x2﹣32,
∴x=,
综上所述,满足条件的⊙M的半径为或.
【点评】本题属于圆综合题,考查了直线与圆的位置关系,直角梯形的性质,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.
考点卡片
1.有理数的乘方
(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.
乘方的结果叫做幂,在an中,a叫做底数,n叫做指数.an读作a的n次方.(将an看作是a的n次方的结果时,也可以读作a的n次幂.)
(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.
(3)方法指引:
①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;
②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.
2.数学常识
数学常识
此类问题要结合实际问题来解决,生活中的一些数学常识要了解.比如给出一个物体的高度要会选择它合适的单位长度等等.
平时要注意多观察,留意身边的小知识.
3.无理数
(1)、定义:无限不循环小数叫做无理数.
说明:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数. 如圆周率、2的平方根等.
(2)、无理数与有理数的区别:
①把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,
比如4=4.0,13=0.33333…而无理数只能写成无限不循环小数,比如2=1.414213562.
②所有的有理数都可以写成两个整数之比;而无理数不能.
(3)学习要求:会判断无理数,了解它的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,如分数π2是无理数,因为π是无理数.
无理数常见的三种类型
(1)开不尽的方根,如等.
(2)特定结构的无限不循环小数,
如0.303 003 000 300 003…(两个3之间依次多一个0).
(3)含有π的绝大部分数,如2π.
注意:判断一个数是否为无理数,不能只看形式,要看化简结果.如是有理数,而不是无理数.
4.实数
(1)实数的定义:有理数和无理数统称实数.
(2)实数的分类:
实数: 或 实数:
5.实数的性质
(1)在实数范围内绝对值的概念与在有理数范围内一样.实数a的绝对值就是在数轴上这个数对应的点与原点的距离.
(2)实数的绝对值:正实数a的绝对值是它本身,负实数的绝对值是它的相反数,0的绝对值是0.
(3)实数a的绝对值可表示为|a|={a(a≥0)﹣a(a<0),就是说实数a的绝对值一定是一个非负数,即|a|≥0.并且有若|x|=a(a≥0),则x=±a.
实数的倒数
乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab=1;反之,若ab=1,则a与b互为倒数,这里应特别注意的是0没有倒数.
6.分数指数幂
分数指数幂.
7.列代数式
(1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.
(2)列代数式五点注意:①仔细辨别词义. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分. ②分清数量关系.要正确列代数式,只有分清数量之间的关系. ③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用. ⑤正确进行代换.列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换.
【规律方法】列代数式应该注意的四个问题
1.在同一个式子或具体问题中,每一个字母只能代表一个量.
2.要注意书写的规范性.用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“ ”或者省略不写.
3.在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数.
4.含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.
8.规律型:图形的变化类
图形的变化类的规律题
首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
9.多项式乘多项式
(1)多项式与多项式相乘的法则:
多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.
(2)运用法则时应注意以下两点:
①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.
10.零指数幂
零指数幂:a0=1(a≠0)
由am÷am=1,am÷am=am﹣m=a0可推出a0=1(a≠0)
注意:00≠1.
11.负整数指数幂
负整数指数幂:a﹣p=1ap(a≠0,p为正整数)
注意:①a≠0;
②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.
③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.
④在混合运算中,始终要注意运算的顺序.
12.一元二次方程的定义
(1)一元二次方程的定义:
只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
(2)概念解析:
一元二次方程必须同时满足三个条件:
①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;
②只含有一个未知数;
③未知数的最高次数是2.
(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.
13.根的判别式
利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.
一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:
①当△>0时,方程有两个不相等的两个实数根;
②当△=0时,方程有两个相等的两个实数根;
③当△<0时,方程无实数根.
上面的结论反过来也成立.
14.解分式方程
(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:
①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.
②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.
所以解分式方程时,一定要检验.
15.函数值
函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.
注意:①当已知函数解析式时,求函数值就是求代数式的值;当已知函数解析式,给出函数值时,求相应的自变量的值就是解方程;
②当自变量确定时,函数值是唯一确定的.但当函数值唯一确定时,对应的自变量可以是多个.
16.一次函数的性质
一次函数的性质:
k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
17.一次函数图象上点的坐标特征
一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).
直线上任意一点的坐标都满足函数关系式y=kx+b.
18.反比例函数图象上点的坐标特征
反比例函数y=k/x(k为常数,k≠0)的图象是双曲线,
①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;
②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;
③在y=k/x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
19.反比例函数与一次函数的交点问题
反比例函数与一次函数的交点问题
(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
(2)判断正比例函数y=k1x和反比例函数y=在同一直角坐标系中的交点个数可总结为:
①当k1与k2同号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有2个交点;
②当k1与k2异号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有0个交点.
20.二次函数的图象
(1)二次函数y=ax2(a≠0)的图象的画法:
①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.
②描点:在平面直角坐标系中描出表中的各点.
③连线:用平滑的曲线按顺序连接各点.
④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
(2)二次函数y=ax2+bx+c(a≠0)的图象
二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.
21.二次函数的性质
二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:
①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.
②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.
③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.
22.二次函数图象与几何变换
由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
23.二次函数综合题
(1)二次函数图象与其他函数图象相结合问题
解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.
(2)二次函数与方程、几何知识的综合应用
将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.
(3)二次函数在实际生活中的应用题
从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
24.平行线的性质
1、平行线性质定理
定理1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.
定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.
定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
2、两条平行线之间的距离处处相等.
25.全等三角形的判定
(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.
(2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.
(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.
(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.
(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.
方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
26.勾股数
勾股数:满足a2+b2=c2 的三个正整数,称为勾股数.
说明:
①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.
②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.
③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…
27.勾股定理的应用
(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.
(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.
②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.
③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.
④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.
28.三角形中位线定理
(1)三角形中位线定理:
三角形的中位线平行于第三边,并且等于第三边的一半.
(2)几何语言:
如图,∵点D、E分别是AB、AC的中点
∴DE∥BC,DE=BC.
29.多边形内角与外角
(1)多边形内角和定理:(n﹣2) 180° (n≥3且n为整数)
此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的所有内角之和正好是n边形的内角和.除此方法之和还有其他几种方法,但这些方法的基本思想是一样的.即将多边形转化为三角形,这也是研究多边形问题常用的方法.
(2)多边形的外角和等于360°.
①多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.
②借助内角和和邻补角概念共同推出以下结论:外角和=180°n﹣(n﹣2) 180°=360°.
30.矩形的性质
(1)矩形的定义:有一个角是直角的平行四边形是矩形.
(2)矩形的性质
①平行四边形的性质矩形都具有;
②角:矩形的四个角都是直角;
③边:邻边垂直;
④对角线:矩形的对角线相等;
⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.
(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.
31.正方形的判定与性质
(1)正方形的性质:正方形具有平行四边形、矩形、菱形的所有性质.
(2)正方形的判定
正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定.
32.*平面向量
平面向量.
33.圆的综合题
圆的综合题.
34.翻折变换(折叠问题)
1、翻折变换(折叠问题)实质上就是轴对称变换.
2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.
首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.
35.坐标与图形变化-旋转
(1)关于原点对称的点的坐标
P(x,y) P(﹣x,﹣y)
(2)旋转图形的坐标
图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.
36.相似三角形的判定与性质
(1)相似三角形相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.
(2)三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.
37.解直角三角形的应用
(1)通过解直角三角形能解决实际问题中的很多有关测量问.
如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.
(2)解直角三角形的一般过程是:
①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).
②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.
38.中位数
(1)中位数:
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.
如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
(2)中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.
(3)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
39.众数
(1)一组数据中出现次数最多的数据叫做众数.
(2)求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
(3)众数不易受数据中极端值的影响.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量..
40.概率公式
(1)随机事件A的概率P(A)=.
(2)P(必然事件)=1.
(3)P(不可能事件)=0.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)