(共16张PPT)
[提分技巧]
求解函数零点(方程根)的个数问题的步骤
第一步:将问题转化为函数的零点问题,进而转化为函数的图象与x轴(或直线y=k)在该区间上的交点问题;
第二步:利用导数研究该函数在该区间上的单调性、极值(最值)、端点值等性质,进而画出其图象;
第三步:结合图象求解.
2.已知函数f(x)=(x-1)ln x-x-1.
证明:
(1)f(x)存在唯一的极值点;
(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.
已知函数零点个数求参数范围
[典例] 已知函数f(x)=ln x+ax,
(1)若函数f(x)在x=1处的切线方程为y=2x+m,求实数a和m的值;
(2)若函数f(x)在定义域内有两个不同的零点x1,x2,求实数a的取值范围.
[提分技巧]
已知函数零点个数求参数范围的策略
(1)根据区间上零点的个数情况估计出函数图象的大致形状,从而推导出导数需要满足的条件,进而求出参数满足的条件.
(2)先求导,通过求导分析函数的单调性情况,再依据函数在区间内的零点情况,推导出函数本身需要满足的条件.此时,由于函数比较复杂,常常需要构造新函数,通过多次求导,层层推理得解.
[对点训练]
1.(2021·柳州高级中学期末)已知函数f(x)=2ln(x-1)-(x-1)2.
(1)求函数f(x)的单调递增区间;
(2)若关于x的方程f(x)+x2-3x-a=0在区间[2,4]内恰有两个相异的实根,求实数a的取值范围.
2.已知函数f(x)=x3-kx+k2.
(1)讨论f(x)的单调性;
(2)若f(x)有三个零点,求k的取值范围.