(共22张PPT)
大题专攻(一) 利用导数研究函数的单调性、极值与最值问题
利用导数研究函数的单调性
题点(一) 讨论函数的单调性(或区间)
[典例1] 已知函数f(x)=aln(x-1)+x2+(a-2)x-a+1,a∈R,试讨论f(x)的单调性.
[提分技巧]
利用导数求函数的单调区间的三种方法
(1)当不等式f′(x)>0或f′(x)<0可解时,确定函数的定义域,解不等式f′(x)>0或f′(x)<0求出单调区间.
(2)当方程f′(x)=0可解时,确定函数的定义域,解方程f′(x)=0,求出实数根,把函数f(x)的间断点(即f(x)的无定义点)的横坐标和实根按从小到大的顺序排列起来,把定义域分成若干个小区间,确定f′(x)在各个区间内的符号,从而确定单调区间.
(3)不等式f′(x)>0或f′(x)<0及方程f′(x)=0均不可解时求导数并化简,根据f′(x)的结构特征,选择相应的基本初等函数,利用其图象与性质确定f′(x)的符号,得单调区间.
[提分技巧]
(1)已知函数的单调性,求参数的取值范围,应用条件f′(x)≥0(或f′(x)≤0),x∈(a,b)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f′(x)不恒等于0的参数的范围.
(2)若函数y=f(x)在区间(a,b)上不单调,则转化为f′(x)=0在(a,b)上有解.
当x变化时,f′(x),f(x)的变化情况如下:
利用导数研究函数的极值、最值
[典例] 已知函数f(x)=ax2-(a+2)x+ln x.
(1)若a=1,求函数f(x)的极值;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围.
[提分技巧]
1.利用导数研究函数的极值、最值应注意的问题
(1)不能忽略函数f(x)的定义域.
(2)f′(x0)=0是可导函数在x=x0处取得极值的必要不充分条件.
(3)函数的极小值不一定比极大值小.
(4)函数在区间(a,b)上有唯一极值点,则这个极值点也是最大(小)值点,此结论在导数的实际应用中经常用到.
2.掌握已知函数极值点或极值求参数的2个要领
列式 根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解
验证 因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性
2.已知函数f(x)=ln x+ax2-(2a+1)x(其中常数a≠0).
(1)当a=1时,求f(x)的单调区间;
(2)若f(x)在x=1处取得极值,且在(0,e]上的最大值为1,求实数a的值.