登录二一教育在线组卷平台 助您教考全无忧
2022年高考文数真题试卷(全国甲卷)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2022·全国甲卷)设集合 ,则 ( )
A. B.
C. D.
2.(2022·全国甲卷)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:
则( )
A.讲座前问卷答题的正确率的中位数小于70%
B.讲座后问卷答题的正确率的平均数大于85%
C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
3.(2022·全国甲卷)若 .则 ( )
A. B. C. D.
4.(2022·全国甲卷)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )
A.8 B.12 C.16 D.20
5.(2022·全国甲卷)将函数 的图像向左平移 个单位长度后得到曲线C,若C关于y轴对称,则 的最小值是( )
A. B. C. D.
6.(2022·全国甲卷)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )
A. B. C. D.
7.(2022·全国甲卷)函数 在区间 的图像大致为( )
A. B.
C. D.
8.(2022·全国甲卷)当 时,函数 取得最大值 ,则 ( )
A.-1 B. C. D.1
9.(2022·全国甲卷)在长方体 中,已知 与平面 和平面 所成的角均为 ,则( )
A.
B.AB与平面 所成的角为
C.
D. 与平面 所成的角为
10.(2022·全国甲卷)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为 ,侧面积分别为 和 ,体积分别为 和 .若 ,则 ( )
A. B. C. D.
11.(2022·全国甲卷)已知椭圆 的离心率为 , 分别为C的左、右顶点,B为C的上顶点.若 ,则C的方程为( )
A. B. C. D.
12.(2022·全国甲卷)已知 ,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.(2022·全国甲卷)已知向量 .若 ,则 .
14.(2022·全国甲卷)设点M在直线 上,点 和 均在 上,则 的方程为 .
15.(2022·全国甲卷)记双曲线 的离心率为e,写出满足条件“直线 与C无公共点”的e的一个值 .
16.(2022·全国甲卷)已知 中,点D在边BC上, .当 取得最小值时, .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
17.(2022·全国甲卷)甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
准点班次数 未准点班次数
A 240 20
B 210 30
附: ,
0.100 0.050 0.010
2.706 3.841 6.635
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
18.(2022·全国甲卷)记 为数列 的前n项和.已知 .
(1)证明: 是等差数列;
(2)若 成等比数列,求 的最小值.
19.(2022·全国甲卷)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面 是边长为8(单位:cm)的正方形, 均为正三角形,且它们所在的平面都与平面 垂直.
(1)证明: 平面 ;
(2)求该包装盒的容积(不计包装盒材料的厚度).
20.(2022·全国甲卷)已知函数 ,曲线 在点 处的切线也是曲线 的切线.
(1)若 ,求a:
(2)求a的取值范围.
21.(2022·全国甲卷)设抛物线 的焦点为F,点 ,过 的直线交C于M,N两点.当直线MD垂直于x轴时, .
(1)求C的方程:
(2)设直线 与C的另一个交点分别为A,B,记直线 的倾斜角分别为 .当 取得最大值时,求直线AB的方程.
四、选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
22.(2022·全国甲卷)在直角坐标系 中,曲线 的参数方程为 (t为参数),曲线 的参数方程为 (s为参数).
(1)写出 的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,求 与 交点的直角坐标,及 与 交点的直角坐标.
23.(2022·全国甲卷)已知a,b,c均为正数,且 ,证明:
(1) ;
(2)若 ,则 .
答案解析部分
1.【答案】A
【知识点】交集及其运算
【解析】【解答】解:∵ ,∴.
故选:A
【分析】根据集合的交集运算即可解出.
2.【答案】B
【知识点】众数、中位数、平均数;极差、方差与标准差
【解析】【解答】解:对于A,讲座前中位数为, 所以A错;
对于B,讲座后问卷答题的正确率只有1个是80%,4个85%,剩下全部大于等于90%, 所以讲座后问卷答题的正确率的平均数大于85% ,所以B对;
对于C,讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;
对于D,讲座后问卷答题的正确率的极差为100%-80%=20% ,
讲座前问卷答题的正确率的极差为95%-60%=35%>20% ,所以D错.
故选:B.
【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.
3.【答案】D
【知识点】复数的基本概念;复数代数形式的混合运算;复数求模
【解析】【解答】解:因为z=1+i ,所以 ,所以 .
故选:D
【分析】根据复数代数形式的运算法则,共轭复数的概念先求得,再由复数的求模公式即可求出.
4.【答案】B
【知识点】由三视图求面积、体积;棱柱、棱锥、棱台的体积
【解析】【解答】解:由三视图还原几何体,如图,
则该直四棱柱的体积 .
故选:B.
【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.
5.【答案】C
【知识点】函数的图象与图象变化;正弦函数的图象;正弦函数的奇偶性与对称性
【解析】【解答】解:由题意知:曲线C为 ,
又曲线C关于y轴对称,则 ,
解得 ,
又ω>0,
故当k=0时,ω的最小值为 .
故选:C.
【分析】先由平移求出曲线C的解析式,再结合对称性得,即可求出ω的最小值.
6.【答案】C
【知识点】古典概型及其概率计算公式
【解析】【解答】解:从6张卡片中无放回抽取2张,共有如下15种情况:
(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),
其中数字之积为4的倍数的有其中数字之积为4的倍数的有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6),共6种情况,
故概率为 .
故选:C.
【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.
7.【答案】A
【知识点】函数奇偶性的性质;函数的值
【解析】【解答】解:由题意得,f(-x)=(3-x-3x)cos(-x)=-(3x-3-x)cosx=-f(x),又
所以f(x)为奇函数,排除BD;
又当时,3x-3-x>0,cosx>0,所以f(x)>0,排除C.
故选:A.
【分析】由函数的奇偶性排除BD,结合指数函数、三角函数的性质逐项排除C,即可得解.
8.【答案】B
【知识点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用
【解析】【解答】因为函数f(x)定义域为(0,+∞),所以依题可知,f(1)=-2 ,f'(1)=0,
又 ,
则,解得 ,
所以,
由f'(x)>0,得01,
因此函数f(x)在(0,1)上递增,在(1,+∞)上递减,
则当x=1时取最大值,满足题意,即有.
故选:B.
【分析】根据题意可知f(1)=-2 ,f'(1)=0,列式即可解得a,b,再根据f'(x)即可解出.
9.【答案】D
【知识点】直线与平面所成的角
【解析】【解答】解:如图所示:
不妨设AB=a,AD=b,AA1=c,依题以及长方体的结构特征可知, B1D与平面ABCD所成角为∠B1DB,
B1D与平面AA1B1B所成角为 ∠DB1A,
所以 ,
即b=c , ,
解得 .
对于A, AB=a,AD=b ,AB=AD ,A错误;
对于B,过B作BE⊥AB1于E,易知BE⊥平面AB1C1D,所以AB与平面AB1C1D所成角为∠BAE,
因为 ,所以 ,B错误;
对于C,,C错误;
对于D, B1D与平面BB1C1C所成角为∠DB1C ,又 ,而0°<∠DB1C<90°,所以∠DB1C=45° .D正确.
故选:D.
【分析】先设AB=a,AD=b,AA1=c,再由题意得,b=c ,最后根据线面角的定义以及长方体的结构特征即可求出.
10.【答案】C
【知识点】旋转体(圆柱、圆锥、圆台、球)
【解析】【解答】解:设母线长为l ,甲圆锥底面半径为r1,乙圆锥底面圆半径为r2,
则,
所以r1=2r2,
又 ,
则 ,
所以 ,
所以甲圆锥的高,
乙圆锥的高 ,
所以 .
故选:C.
【分析】设母线长为l ,甲圆锥底面半径为r1,乙圆锥底面圆半径为r2,根据圆锥的侧面积公式可得r1=2r2,再结合圆心角之和可将r1,r2分别用l表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.
11.【答案】B
【知识点】平面向量数量积的运算;平面向量数量积坐标表示的应用;椭圆的简单性质
【解析】【解答】解:因为离心率,解得,则b2=a2 ,
记A1,A2分别为C的左右顶点,则A1(-a,0),A2(a,0),
又B为上顶点,所以B(0,b),
所以 ,
因为
所以-a2+b2=-1,将b2=a2代入,解得a2=9,b2=8,
故椭圆的方程为 .
故选:B.
【分析】根据离心率及,解得关于a2,b2的等量关系式,即可得解.
12.【答案】A
【知识点】指数函数单调性的应用;指数式与对数式的互化;换底公式的应用;对数函数的单调性与特殊点;基本不等式在最值问题中的应用
【解析】【解答】解:由9m=10可得,
而,
所以 ,
即m>lg11,
所以a=10m-11>10lg11-11=0.
又,
所以 ,
即log89>m ,
所以 .
综上,a>0>b .
故选:A
【分析】根据指对互化以及对数函数的单调性即可知m=log910>1 ,再利用基本不等式,换底公式可得 m>lg11,log89>m ,然后由指数函数的单调性即可解出.
13.【答案】 或-0.75
【知识点】数量积判断两个平面向量的垂直关系
【解析】【解答】由题意知: ,解得 .
故答案为: .
【分析】由向量垂直的坐标表示求解即可.
14.【答案】
【知识点】圆的标准方程
【解析】【解答】解:∵点M在直线 上,
∴设点M为(a,1-2a),又因为点 和 均在 上,
∴点M到两点的距离相等且为半径R,
∴ ,
化简得:a2-6a+9+4a2-4a+1=5a2 ,
解得a=1,
∴M(1,-1) , ,
则的方程为 .
故答案为:
【分析】设出点M的坐标,利用点 和 均在 上,求得圆心及半径,即可得圆的方程.
15.【答案】2(满足 皆可)
【知识点】双曲线的简单性质
【解析】【解答】解: 因为双曲线 ,
所以C的渐近线方程为,
结合渐近线的特点,只需,即,
可满足条件“直线y=2x与C无公共点”
所以,
又因为e>1,所以 ,
故答案为:2(满足皆可)
【分析】根据题干信息,只需双曲线渐近线中即可求得满足要求的e值.
16.【答案】 或
【知识点】基本不等式在最值问题中的应用;余弦定理的应用
【解析】【解答】解:设CD=2BD=2m>0,
则在△ABD中,AB2=BD2+AD2-2BD·ADcos∠ADB=m2+4+2m ,
在△ACD中,AC2=CD2+AD2-2CD·ADcos∠ADC=4m2+4-4m ,
所以 ,
当且仅当即时,等号成立,
所以当取最小值时,,即BD= .
故答案为: .
【分析】设CD=2BD=2m>0,利用余弦定理表示出后,结合基本不等式即可得解.
17.【答案】(1)解:由表中数据可知,A共有班次240+20=260次,准点班次有240次,
设A家公司长途客车准点事件为M,
则 ;
则A家公司长途客车准点的概率为 ;
B共有班次210+30=240次,准点班次有210次,
设B家公司长途客车准点事件为N,
则 .
B家公司长途客车准点的概率为 .
(2)解:列联表
准点班次数 未准点班次数 合计
A 240 20 260
B 210 30 240
合计 450 50 500
= ,
根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.
【知识点】独立性检验的应用;古典概型及其概率计算公式
【解析】【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;
(2)根据表格中数据及公式计算K2,再利用临界值表比较即可得结论.
18.【答案】(1)已知 ,即 ①,
当 时, ②,
①-②得, ,
即 ,
即 ,所以 , 且 ,
所以 是以1为公差的等差数列.
(2)由(1)中 可得, , , ,
又 , , 成等比数列,所以 ,
即 ,解得 ,
所以 ,所以 ,
所以,当 或 时 .
【知识点】等差数列;等差数列的前n项和;等比数列的性质;数列递推式
【解析】【分析】(1)依题意可得 ,根据 ,作差即可得到 ,从而得证;
(2)由(1)及等比中项的性质求出a1,即可得到{an}的通项公式与前n项和,再根据二次函数的性质计算可得.
19.【答案】(1)证明:分别取 的中点 ,连接 ,
因为 为全等的正三角形,所以 , ,又平面 平面 ,平面 平面 , 平面 ,所以 平面 ,同理可得 平面 ,根据线面垂直的性质定理可知 ,而 ,所以四边形 为平行四边形,所以 ,又 平面 , 平面 ,所以 平面 .
(2)解:分别取 中点 ,
由(1)知, 且 ,同理有, , , ,由平面知识可知, , , ,所以该几何体的体积等于长方体 的体积加上四棱锥 体积的 倍.
因为 , ,点 到平面 的距离即为点 到直线 的距离 , ,所以该几何体的体积 .
【知识点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;直线与平面垂直的判定;直线与平面垂直的性质
【解析】【分析】(1)依题意,根据直线与平面垂直的判定定理可得EM⊥平面ABCD,FN⊥平面ABCD,根据线面垂直的性质定理可知EM//FN,即可知四边形EMNF为平行四边形,可得EF//MN,再根据线面平行的判定定理即可证出;
(2)再分别取AD,DC中点K,L,由(1)知,该几何体的体积等于长方体KMNL-EFGH的体积加上四棱锥B-MNFE体积的4倍,即可解出.
20.【答案】(1)解:由题意知, , , ,则 在点 处的切线方程为 ,
即 ,设该切线与 切于点 , ,则 ,解得 ,则 ,解得 ;
(2)解: ,则 在点 处的切线方程为 ,整理得 ,
设该切线与 切于点 , ,则 ,则切线方程为 ,整理得 ,
则 ,整理得 ,
令 ,则 ,令 ,解得 或 ,
令 ,解得 或 ,则 变化时, 的变化情况如下表:
0 1
- 0 + 0 - 0 +
-1
则 的值域为 ,故 的取值范围为 .
【知识点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用
【解析】【分析】(1)先由f(x)上的切点求出切线方程,设出g(x)上的切点坐标,由斜率求出切点坐标,再由函数值求出a即可;
(2)设出g(x)上的切点坐标,分别由f(x)和g(x)及切点表示出切线方程,由切线重合表示出a,构造函数,求导求出函数值域,即可求得a的取值范围.
21.【答案】(1)解:抛物线的准线为 ,当 与x轴垂直时,点M的横坐标为p,
此时 ,所以 ,
所以抛物线C的方程为 ;
(2)解:设 ,直线 ,
由 可得 , ,
由斜率公式可得 , ,
直线 ,代入抛物线方程可得 ,
,所以 ,同理可得 ,
所以
又因为直线MN、AB的倾斜角分别为 ,
所以 ,
若要使 最大,则 ,
设 ,则 ,
当且仅当 即 时,等号成立,
所以当 最大时, ,设直线 ,
代入抛物线方程可得 ,
,所以 ,
所以直线 .
【知识点】抛物线的定义;抛物线的标准方程;直线与圆锥曲线的关系;直线与圆锥曲线的综合问题
【解析】【分析】(1)由抛物线的定义可得,即可得解;
(2)设点的坐标及直线MN:x=my+1,由韦达定理及斜率公式可得KMN=2KAB,再由差角的正切公式及基本不等式可得 ,设直线AB:,结合韦达定理可解.
22.【答案】(1)解:因为 , ,所以 ,即 普通方程为 .
(2)解:因为 ,所以 ,即 的普通方程为 ,
由 ,即 的普通方程为 .
联立 ,解得: 或 ,即交点坐标为 , ;
联立 ,解得: 或 ,即交点坐标 , .
【知识点】直线与圆锥曲线的关系;参数方程化成普通方程
【解析】【分析】(1)消去参数t,即可得到C1的普通方程;
(2)将曲线C2,C3的方程化成普通方程,联立求解即解出.
23.【答案】(1)证明:由柯西不等式有 ,
所以 ,
当且仅当 时,取等号,
所以
(2)证明:因为 , , , ,由(1)得 ,
即 ,所以 ,
由权方和不等式知 ,
当且仅当 ,即 , 时取等号,
所以 .
【知识点】一般形式的柯西不等式
【解析】【分析】(1)根据a2+b2+4c2=a2+b2+(2c)2,利用柯西不等式即可得证;
(2)由(1)结合已知可得 ,即可得到 ,再根据权方和不等式即可得证.
二一教育在线组卷平台(zujuan.21cnjy.com)自动生成 1 / 1登录二一教育在线组卷平台 助您教考全无忧
2022年高考文数真题试卷(全国甲卷)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2022·全国甲卷)设集合 ,则 ( )
A. B.
C. D.
【答案】A
【知识点】交集及其运算
【解析】【解答】解:∵ ,∴.
故选:A
【分析】根据集合的交集运算即可解出.
2.(2022·全国甲卷)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:
则( )
A.讲座前问卷答题的正确率的中位数小于70%
B.讲座后问卷答题的正确率的平均数大于85%
C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
【答案】B
【知识点】众数、中位数、平均数;极差、方差与标准差
【解析】【解答】解:对于A,讲座前中位数为, 所以A错;
对于B,讲座后问卷答题的正确率只有1个是80%,4个85%,剩下全部大于等于90%, 所以讲座后问卷答题的正确率的平均数大于85% ,所以B对;
对于C,讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;
对于D,讲座后问卷答题的正确率的极差为100%-80%=20% ,
讲座前问卷答题的正确率的极差为95%-60%=35%>20% ,所以D错.
故选:B.
【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.
3.(2022·全国甲卷)若 .则 ( )
A. B. C. D.
【答案】D
【知识点】复数的基本概念;复数代数形式的混合运算;复数求模
【解析】【解答】解:因为z=1+i ,所以 ,所以 .
故选:D
【分析】根据复数代数形式的运算法则,共轭复数的概念先求得,再由复数的求模公式即可求出.
4.(2022·全国甲卷)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )
A.8 B.12 C.16 D.20
【答案】B
【知识点】由三视图求面积、体积;棱柱、棱锥、棱台的体积
【解析】【解答】解:由三视图还原几何体,如图,
则该直四棱柱的体积 .
故选:B.
【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.
5.(2022·全国甲卷)将函数 的图像向左平移 个单位长度后得到曲线C,若C关于y轴对称,则 的最小值是( )
A. B. C. D.
【答案】C
【知识点】函数的图象与图象变化;正弦函数的图象;正弦函数的奇偶性与对称性
【解析】【解答】解:由题意知:曲线C为 ,
又曲线C关于y轴对称,则 ,
解得 ,
又ω>0,
故当k=0时,ω的最小值为 .
故选:C.
【分析】先由平移求出曲线C的解析式,再结合对称性得,即可求出ω的最小值.
6.(2022·全国甲卷)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )
A. B. C. D.
【答案】C
【知识点】古典概型及其概率计算公式
【解析】【解答】解:从6张卡片中无放回抽取2张,共有如下15种情况:
(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),
其中数字之积为4的倍数的有其中数字之积为4的倍数的有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6),共6种情况,
故概率为 .
故选:C.
【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.
7.(2022·全国甲卷)函数 在区间 的图像大致为( )
A. B.
C. D.
【答案】A
【知识点】函数奇偶性的性质;函数的值
【解析】【解答】解:由题意得,f(-x)=(3-x-3x)cos(-x)=-(3x-3-x)cosx=-f(x),又
所以f(x)为奇函数,排除BD;
又当时,3x-3-x>0,cosx>0,所以f(x)>0,排除C.
故选:A.
【分析】由函数的奇偶性排除BD,结合指数函数、三角函数的性质逐项排除C,即可得解.
8.(2022·全国甲卷)当 时,函数 取得最大值 ,则 ( )
A.-1 B. C. D.1
【答案】B
【知识点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用
【解析】【解答】因为函数f(x)定义域为(0,+∞),所以依题可知,f(1)=-2 ,f'(1)=0,
又 ,
则,解得 ,
所以,
由f'(x)>0,得01,
因此函数f(x)在(0,1)上递增,在(1,+∞)上递减,
则当x=1时取最大值,满足题意,即有.
故选:B.
【分析】根据题意可知f(1)=-2 ,f'(1)=0,列式即可解得a,b,再根据f'(x)即可解出.
9.(2022·全国甲卷)在长方体 中,已知 与平面 和平面 所成的角均为 ,则( )
A.
B.AB与平面 所成的角为
C.
D. 与平面 所成的角为
【答案】D
【知识点】直线与平面所成的角
【解析】【解答】解:如图所示:
不妨设AB=a,AD=b,AA1=c,依题以及长方体的结构特征可知, B1D与平面ABCD所成角为∠B1DB,
B1D与平面AA1B1B所成角为 ∠DB1A,
所以 ,
即b=c , ,
解得 .
对于A, AB=a,AD=b ,AB=AD ,A错误;
对于B,过B作BE⊥AB1于E,易知BE⊥平面AB1C1D,所以AB与平面AB1C1D所成角为∠BAE,
因为 ,所以 ,B错误;
对于C,,C错误;
对于D, B1D与平面BB1C1C所成角为∠DB1C ,又 ,而0°<∠DB1C<90°,所以∠DB1C=45° .D正确.
故选:D.
【分析】先设AB=a,AD=b,AA1=c,再由题意得,b=c ,最后根据线面角的定义以及长方体的结构特征即可求出.
10.(2022·全国甲卷)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为 ,侧面积分别为 和 ,体积分别为 和 .若 ,则 ( )
A. B. C. D.
【答案】C
【知识点】旋转体(圆柱、圆锥、圆台、球)
【解析】【解答】解:设母线长为l ,甲圆锥底面半径为r1,乙圆锥底面圆半径为r2,
则,
所以r1=2r2,
又 ,
则 ,
所以 ,
所以甲圆锥的高,
乙圆锥的高 ,
所以 .
故选:C.
【分析】设母线长为l ,甲圆锥底面半径为r1,乙圆锥底面圆半径为r2,根据圆锥的侧面积公式可得r1=2r2,再结合圆心角之和可将r1,r2分别用l表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.
11.(2022·全国甲卷)已知椭圆 的离心率为 , 分别为C的左、右顶点,B为C的上顶点.若 ,则C的方程为( )
A. B. C. D.
【答案】B
【知识点】平面向量数量积的运算;平面向量数量积坐标表示的应用;椭圆的简单性质
【解析】【解答】解:因为离心率,解得,则b2=a2 ,
记A1,A2分别为C的左右顶点,则A1(-a,0),A2(a,0),
又B为上顶点,所以B(0,b),
所以 ,
因为
所以-a2+b2=-1,将b2=a2代入,解得a2=9,b2=8,
故椭圆的方程为 .
故选:B.
【分析】根据离心率及,解得关于a2,b2的等量关系式,即可得解.
12.(2022·全国甲卷)已知 ,则( )
A. B. C. D.
【答案】A
【知识点】指数函数单调性的应用;指数式与对数式的互化;换底公式的应用;对数函数的单调性与特殊点;基本不等式在最值问题中的应用
【解析】【解答】解:由9m=10可得,
而,
所以 ,
即m>lg11,
所以a=10m-11>10lg11-11=0.
又,
所以 ,
即log89>m ,
所以 .
综上,a>0>b .
故选:A
【分析】根据指对互化以及对数函数的单调性即可知m=log910>1 ,再利用基本不等式,换底公式可得 m>lg11,log89>m ,然后由指数函数的单调性即可解出.
二、填空题:本题共4小题,每小题5分,共20分。
13.(2022·全国甲卷)已知向量 .若 ,则 .
【答案】 或-0.75
【知识点】数量积判断两个平面向量的垂直关系
【解析】【解答】由题意知: ,解得 .
故答案为: .
【分析】由向量垂直的坐标表示求解即可.
14.(2022·全国甲卷)设点M在直线 上,点 和 均在 上,则 的方程为 .
【答案】
【知识点】圆的标准方程
【解析】【解答】解:∵点M在直线 上,
∴设点M为(a,1-2a),又因为点 和 均在 上,
∴点M到两点的距离相等且为半径R,
∴ ,
化简得:a2-6a+9+4a2-4a+1=5a2 ,
解得a=1,
∴M(1,-1) , ,
则的方程为 .
故答案为:
【分析】设出点M的坐标,利用点 和 均在 上,求得圆心及半径,即可得圆的方程.
15.(2022·全国甲卷)记双曲线 的离心率为e,写出满足条件“直线 与C无公共点”的e的一个值 .
【答案】2(满足 皆可)
【知识点】双曲线的简单性质
【解析】【解答】解: 因为双曲线 ,
所以C的渐近线方程为,
结合渐近线的特点,只需,即,
可满足条件“直线y=2x与C无公共点”
所以,
又因为e>1,所以 ,
故答案为:2(满足皆可)
【分析】根据题干信息,只需双曲线渐近线中即可求得满足要求的e值.
16.(2022·全国甲卷)已知 中,点D在边BC上, .当 取得最小值时, .
【答案】 或
【知识点】基本不等式在最值问题中的应用;余弦定理的应用
【解析】【解答】解:设CD=2BD=2m>0,
则在△ABD中,AB2=BD2+AD2-2BD·ADcos∠ADB=m2+4+2m ,
在△ACD中,AC2=CD2+AD2-2CD·ADcos∠ADC=4m2+4-4m ,
所以 ,
当且仅当即时,等号成立,
所以当取最小值时,,即BD= .
故答案为: .
【分析】设CD=2BD=2m>0,利用余弦定理表示出后,结合基本不等式即可得解.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
17.(2022·全国甲卷)甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
准点班次数 未准点班次数
A 240 20
B 210 30
附: ,
0.100 0.050 0.010
2.706 3.841 6.635
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
【答案】(1)解:由表中数据可知,A共有班次240+20=260次,准点班次有240次,
设A家公司长途客车准点事件为M,
则 ;
则A家公司长途客车准点的概率为 ;
B共有班次210+30=240次,准点班次有210次,
设B家公司长途客车准点事件为N,
则 .
B家公司长途客车准点的概率为 .
(2)解:列联表
准点班次数 未准点班次数 合计
A 240 20 260
B 210 30 240
合计 450 50 500
= ,
根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.
【知识点】独立性检验的应用;古典概型及其概率计算公式
【解析】【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;
(2)根据表格中数据及公式计算K2,再利用临界值表比较即可得结论.
18.(2022·全国甲卷)记 为数列 的前n项和.已知 .
(1)证明: 是等差数列;
(2)若 成等比数列,求 的最小值.
【答案】(1)已知 ,即 ①,
当 时, ②,
①-②得, ,
即 ,
即 ,所以 , 且 ,
所以 是以1为公差的等差数列.
(2)由(1)中 可得, , , ,
又 , , 成等比数列,所以 ,
即 ,解得 ,
所以 ,所以 ,
所以,当 或 时 .
【知识点】等差数列;等差数列的前n项和;等比数列的性质;数列递推式
【解析】【分析】(1)依题意可得 ,根据 ,作差即可得到 ,从而得证;
(2)由(1)及等比中项的性质求出a1,即可得到{an}的通项公式与前n项和,再根据二次函数的性质计算可得.
19.(2022·全国甲卷)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面 是边长为8(单位:cm)的正方形, 均为正三角形,且它们所在的平面都与平面 垂直.
(1)证明: 平面 ;
(2)求该包装盒的容积(不计包装盒材料的厚度).
【答案】(1)证明:分别取 的中点 ,连接 ,
因为 为全等的正三角形,所以 , ,又平面 平面 ,平面 平面 , 平面 ,所以 平面 ,同理可得 平面 ,根据线面垂直的性质定理可知 ,而 ,所以四边形 为平行四边形,所以 ,又 平面 , 平面 ,所以 平面 .
(2)解:分别取 中点 ,
由(1)知, 且 ,同理有, , , ,由平面知识可知, , , ,所以该几何体的体积等于长方体 的体积加上四棱锥 体积的 倍.
因为 , ,点 到平面 的距离即为点 到直线 的距离 , ,所以该几何体的体积 .
【知识点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;直线与平面垂直的判定;直线与平面垂直的性质
【解析】【分析】(1)依题意,根据直线与平面垂直的判定定理可得EM⊥平面ABCD,FN⊥平面ABCD,根据线面垂直的性质定理可知EM//FN,即可知四边形EMNF为平行四边形,可得EF//MN,再根据线面平行的判定定理即可证出;
(2)再分别取AD,DC中点K,L,由(1)知,该几何体的体积等于长方体KMNL-EFGH的体积加上四棱锥B-MNFE体积的4倍,即可解出.
20.(2022·全国甲卷)已知函数 ,曲线 在点 处的切线也是曲线 的切线.
(1)若 ,求a:
(2)求a的取值范围.
【答案】(1)解:由题意知, , , ,则 在点 处的切线方程为 ,
即 ,设该切线与 切于点 , ,则 ,解得 ,则 ,解得 ;
(2)解: ,则 在点 处的切线方程为 ,整理得 ,
设该切线与 切于点 , ,则 ,则切线方程为 ,整理得 ,
则 ,整理得 ,
令 ,则 ,令 ,解得 或 ,
令 ,解得 或 ,则 变化时, 的变化情况如下表:
0 1
- 0 + 0 - 0 +
-1
则 的值域为 ,故 的取值范围为 .
【知识点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用
【解析】【分析】(1)先由f(x)上的切点求出切线方程,设出g(x)上的切点坐标,由斜率求出切点坐标,再由函数值求出a即可;
(2)设出g(x)上的切点坐标,分别由f(x)和g(x)及切点表示出切线方程,由切线重合表示出a,构造函数,求导求出函数值域,即可求得a的取值范围.
21.(2022·全国甲卷)设抛物线 的焦点为F,点 ,过 的直线交C于M,N两点.当直线MD垂直于x轴时, .
(1)求C的方程:
(2)设直线 与C的另一个交点分别为A,B,记直线 的倾斜角分别为 .当 取得最大值时,求直线AB的方程.
【答案】(1)解:抛物线的准线为 ,当 与x轴垂直时,点M的横坐标为p,
此时 ,所以 ,
所以抛物线C的方程为 ;
(2)解:设 ,直线 ,
由 可得 , ,
由斜率公式可得 , ,
直线 ,代入抛物线方程可得 ,
,所以 ,同理可得 ,
所以
又因为直线MN、AB的倾斜角分别为 ,
所以 ,
若要使 最大,则 ,
设 ,则 ,
当且仅当 即 时,等号成立,
所以当 最大时, ,设直线 ,
代入抛物线方程可得 ,
,所以 ,
所以直线 .
【知识点】抛物线的定义;抛物线的标准方程;直线与圆锥曲线的关系;直线与圆锥曲线的综合问题
【解析】【分析】(1)由抛物线的定义可得,即可得解;
(2)设点的坐标及直线MN:x=my+1,由韦达定理及斜率公式可得KMN=2KAB,再由差角的正切公式及基本不等式可得 ,设直线AB:,结合韦达定理可解.
四、选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
22.(2022·全国甲卷)在直角坐标系 中,曲线 的参数方程为 (t为参数),曲线 的参数方程为 (s为参数).
(1)写出 的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,求 与 交点的直角坐标,及 与 交点的直角坐标.
【答案】(1)解:因为 , ,所以 ,即 普通方程为 .
(2)解:因为 ,所以 ,即 的普通方程为 ,
由 ,即 的普通方程为 .
联立 ,解得: 或 ,即交点坐标为 , ;
联立 ,解得: 或 ,即交点坐标 , .
【知识点】直线与圆锥曲线的关系;参数方程化成普通方程
【解析】【分析】(1)消去参数t,即可得到C1的普通方程;
(2)将曲线C2,C3的方程化成普通方程,联立求解即解出.
23.(2022·全国甲卷)已知a,b,c均为正数,且 ,证明:
(1) ;
(2)若 ,则 .
【答案】(1)证明:由柯西不等式有 ,
所以 ,
当且仅当 时,取等号,
所以
(2)证明:因为 , , , ,由(1)得 ,
即 ,所以 ,
由权方和不等式知 ,
当且仅当 ,即 , 时取等号,
所以 .
【知识点】一般形式的柯西不等式
【解析】【分析】(1)根据a2+b2+4c2=a2+b2+(2c)2,利用柯西不等式即可得证;
(2)由(1)结合已知可得 ,即可得到 ,再根据权方和不等式即可得证.
二一教育在线组卷平台(zujuan.21cnjy.com)自动生成 1 / 1