四川省宣汉县第二中学(新课标人教版)高三数学复习《直线和圆锥曲线的位置关系》

文档属性

名称 四川省宣汉县第二中学(新课标人教版)高三数学复习《直线和圆锥曲线的位置关系》
格式 zip
文件大小 794.8KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2014-02-18 08:10:20

图片预览

文档简介

直线和圆锥曲线
直线与椭圆、双曲线、抛物线中每一个曲线的位置关系都有相交、相切、相离三种情况,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.
直线和椭圆、双曲线、抛物线中每一个曲线的公共点问题,可以转化为它们的方程所组成的方程组求解的问题,从而用代数方法判断直线与曲线的位置关系。
解决直线和圆锥曲线的位置关系的解题步骤是:
直线的斜率不存在,直线的斜率存,
(2)联立直线和曲线的方程组;
讨论类一元二次方程
一元二次方程的判别式
韦达定理,同类坐标变换
同点纵横坐标变换
(7)x,y,k(斜率)的取值范围
(8)目标:弦长,中点,垂直,角度,向量,面积,范围等等
题型一:动弦过定点的问题
例:(07山东理)已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3;最小值为1;
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证:直线过定点,并求出该定点的坐标。
题型二:定值的问题
例1.已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。
求椭圆C的方程;
E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
例2.【2012高考真题上海理22】在平面直角坐标系中,已知双曲线:.
(1)过的左顶点引的一条渐进线的平行线,求该直线与另一条渐进线及轴围成的三角形的面积;
(2)设斜率为1的直线交于、两点,若与圆相切,求证:;
(3)设椭圆:,若、分别是、上的动点,且,求证:到直线的距离是定值.
例3.【2012高考江苏19】(16分)如图,在平面直角坐标系中,椭圆的左、右焦点分别为,.已知和都在椭圆上,其中为椭圆的离心率.
(1)求椭圆的方程;
(2)设是椭圆上位于轴上方的两点,且直线与直线平行,与交于点P.
(i)若,求直线的斜率;
(ii)求证:是定值.
例4.【2012高考真题辽宁理20】(本小题满分12分)
如图,椭圆:,a,b为常数),动圆,。点分别为的左,右顶点,与相交于A,B,C,D四点。
(Ⅰ)求直线与直线交点M的轨迹方程;
(Ⅱ)设动圆与相交于四点,其中,
。若矩形与矩形的面积相等,证明:为定值。
题型三:向量共线问题
解析几何中的向量共线,就是将向量问题转化为同类坐标的比例问题,再通过韦达定理------同类坐标变换,将问题解决。此类问题不难解决。
例1.【2012高考真题北京理19】(本小题共14分)已知曲线C:
(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;
(2)设m=4,曲线C与y轴的焦点A,B(点A位于点B的上方),直线与曲线C交于不同两点,,M,N,直线y=1与直线BM交于点G,求证:A,G,N三点共线。
例2.设过点D(0,3)的直线交曲线M:于P、Q两点,且,求实数的取值范围。
例3..如图,已知点(1,0),直线l:x=-1,P为平面上的动点,过作直线l的垂线,垂足为点,且错误!未找到引用源。
(Ⅰ)求动点的轨迹C的方程;
(Ⅱ)过点F的直线交轨迹C于A、B两点,交直线l于点M,已知错误!未找到引用源。错误!未找到引用源。,求错误!未找到引用源。的值。
题型四:面积问题
例1.(山东06文)已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4。
(Ⅰ)求椭圆的方程;
(Ⅱ)直线过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程。
题型五:取值范围问题(函数问题)
例1.(2009湖南卷文)(本小题满分13分)
已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C的左准线与轴的交点,过点P的直线与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线的斜率的取值范围。
例2.已知椭圆过点,且离心率。
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点、,且线段的垂直平分线过定点,求的取值范围。
例3.【2012高考真题四川理21】(本小题满分12分)
如图,动点到两定点、构成,且,设动点的轨迹为。
(Ⅰ)求轨迹的方程;
(Ⅱ)设直线与轴交于点,与轨迹相交于点,且,求的取值范围。
题型六:存在性问题:(存在点,存在直线y=kx+m,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)
例1.(2009山东卷文)(本小题满分14分)设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1例2.设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,
(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
例3.如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.
(I)设,求与的比值;
(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
例4.(07湖北理科)在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。
(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;
(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?
参考答案
题型一:
例1.解(I)由题意设椭圆的标准方程为,
(II)设,由得


(注意:这一步是同类坐标变换)
(注意:这一步叫同点纵、横坐标间的变换)
以AB为直径的圆过椭圆的右顶点且,
,,

,解得,且满足
当时,,直线过定点与已知矛盾;
当时,,直线过定点
综上可知,直线过定点,定点坐标为
题型二:
例1.解:(Ⅰ)由题意,c=1,可设椭圆方程为 ,将点A的坐标代入方
程: ,解得 , (舍去)
所以椭圆方程为 。
(Ⅱ)设直线AE方程为:,代入得
设,,因为点在椭圆上,所以
………8分
又直线AF的斜率与AE的斜率互为相反数,在上式中以—K代K,可得

所以直线EF的斜率
即直线EF的斜率为定值,其值为。 ……12分
例2.【答案】
过点A与渐近线平行的直线方程为
,,则到直线的距离为.
设到直线的距离为.
例3.【答案】解:(1)由题设知,,由点在椭圆上,得
,∴。
由点在椭圆上,得
∴椭圆的方程为。
(2)由(1)得,,又∵∥,
∴设、的方程分别为,。
∴。
∴。①
同理,。②
(i)由①②得,。解得=2。
∵注意到,∴。
∴直线的斜率为。
(ii)证明:∵∥,∴,即。
∴。
由点在椭圆上知,,∴。
同理。。

由①②得,,,
∴。
∴是定值。
例4.【答案】
题型三:
例1.【答案】解:( 1)原曲线方程可化简得:
由题意可得:,解得:
(2)由已知直线代入椭圆方程化简得:,
,解得:
由韦达定理得:①,,②
设,,
方程为:,则,
,,
欲证三点共线,只需证,共线
即成立,化简得:
将①②代入易知等式成立,则三点共线得证。
例2.解:设P(x1,y1),Q(x2,y2),(x1,y1-3)=(x2,y2-3)即
设直线PQ的方程为:,
由消y整理后,得
P、Q是曲线M上的两点,=
即 ①
由韦达定理得:
即 ②
由①得,代入②,整理得,解之得
当直线PQ的斜率不存在,即时,易知或。
总之实数的取值范围是。
例3.解法一:
(Ⅰ)设点,则,由得:
,化简得.
(Ⅱ)设直线的方程为: .
设,,又,
联立方程组,消去得:
,,故
由,得:
,,整理得:,,
解法二:(Ⅰ)由得:,
,,
所以点的轨迹是抛物线,由题意,轨迹的方程为:.
(Ⅱ)由已知,,得.
则:.…………①
过点分别作准线的垂线,垂足分别为,,
则有:.…………②由①②得:,即
题型四:
例1.解:设椭圆方程为
(I)由已知得
所求椭圆方程为
(II)解法一:由题意知直线l的斜率存在,
设直线l的方程为,
由 消去y得关于x的方程:
由直线l与椭圆相交A、B两点,△,
解得,又由韦达定理得
.
原点O到直线l的距离
解法1:对两边平方整理得:
(*)

整理得:又,.从而的最大值为,
此时代入方程(*)得
所以,所求直线方程为: .
解法2:令,则,
.当且仅当即时,
此时.所以,所求直线方程为 .
题型五:
例1.解: (Ⅰ)依题意,设椭圆C的方程为焦距为,
由题设条件知, 所以 故椭圆C的方程为 .
(Ⅱ)椭圆C的左准线方程为所以点P的坐标,
显然直线的斜率存在,所以直线的方程为。
如图,设点M,N的坐标分别为线段MN的中点为G,
由得. ……①
由解得. ……②
因为是方程①的两根,所以,于是
=, .
因为,所以点G不可能在轴的右边,
又直线,方程分别为
所以点在正方形内(包括边界)的充要条件为
即 亦即
解得,此时②也成立.
故直线斜率的取值范围是
例3.答案】本题主要考查轨迹方程的求法,圆锥曲线的定义等基础知识,考查基本运算能力,逻辑推理能力,考查方程与函数、数形结合、分类讨论、化归与转化等数学思想
题型六:
例1.解:(1)因为,,,
所以, 即.
当m=0时,方程表示两直线,方程为;
当时, 方程表示的是圆
当且时,方程表示的是椭圆;
当时,方程表示的是双曲线.
(2).当时, 轨迹E的方程为,设圆心在原点的圆的一条切线为,解方程组得,即,
要使切线与轨迹E恒有两个交点A,B,
则使△=,
即,即, 且
,
要使, 需使,即,
所以, 即且, 即恒成立.
所以又因为直线为圆心在原点的圆的一条切线,
所以圆的半径为,, 所求的圆为.
当切线的斜率不存在时,切线为,与交于点或也满足.
综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.
(3)当时,轨迹E的方程为,设直线的方程为,因为直线与圆C:(1因为与轨迹E只有一个公共点B1,
由(2)知得,
即有唯一解
则△=, 即, ②
由①②得, 此时A,B重合为B1(x1,y1)点,
由 中,所以,,
B1(x1,y1)点在椭圆上,所以,所以,
在直角三角形OA1B1中,因为当且仅当时取等号,所以,即
当时|A1B1|取得最大值,最大值为1.
例2.解:(1)因为椭圆E: (a,b>0)过M(2,) ,N(,1)两点,
所以解得所以椭圆E的方程为
(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即,
则△=,即
,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,,,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.
因为,
所以,
,
①当时
因为所以,所以,
所以当且仅当时取”=”.
当时,.
当AB的斜率不存在时, 两个交点为或,所以此时,综上, |AB |的取值范围为即:
例3.解:(I)因为C1,C2的离心率相同,故依题意可设
设直线,分别与C1,C2的方程联立,求得
………………4分
当表示A,B的纵坐标,可知
………………6分
(II)t=0时的l不符合题意.时,BO//AN当且仅当BO的斜率kBO与AN的斜率kAN 相等,即
解得
因为
所以当时,不存在直线l,使得BO//AN;
当时,存在直线l使得BO//AN. ………………12分
例4.解法1:(Ⅰ)依题意,点N的坐标为N(0,-p),可设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py联立得消去y得x2-2pkx-2p2=0.
由韦达定理得x1+x2=2pk,x1x2=-2p2.
于是
==
.
(Ⅱ)假设满足条件的直线l存在,其方程为y=a,AC的中点为径的圆相交于点P、Q,PQ的中点为H,则
=.
==
=
令,得为定值,故满足条件的直线l存在,其方程为,即抛物线的通径所在的直线.
解法2:
(Ⅰ)前同解法1,再由弦长公式得
=又由点到直线的距离公式得.
从而,
(Ⅱ)假设满足条件的直线t存在,其方程为y=a,则以AC为直径的圆的方程为
将直线方程y=a代入得
设直线l与以AC为直径的圆的交点为P(x2,y2),Q(x4,y4),则有
令为定值,故满足条件的直线l存在,其方程为.即抛物线的通径所在的直线。
同课章节目录