2023届高考二轮总复习课件(适用于新高考新教材) 数学 8.解析几何(共14张PPT)

文档属性

名称 2023届高考二轮总复习课件(适用于新高考新教材) 数学 8.解析几何(共14张PPT)
格式 pptx
文件大小 490.0KB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2023-01-05 17:34:27

图片预览

文档简介

(共14张PPT)
8.解析几何
下篇
1.直线方程的五种形式
(1)点斜式:y-y1=k(x-x1)(直线过点P1(x1,y1),且斜率为k,不包括y轴和平行于y轴的直线).
(2)斜截式:y=kx+b(b为直线l在y轴上的截距,且斜率为k,不包括y轴和平行于y轴的直线).
(3)两点式: (直线过点P1(x1,y1),P2(x2,y2),且x1≠x2,y1≠y2,不包括坐标轴和平行于坐标轴的直线).
(4)截距式: =1(a,b分别为直线的横、纵截距,且a≠0,b≠0,不包括坐标轴、平行于坐标轴和过原点的直线).
(5)一般式:Ax+By+C=0(其中A,B不同时为0).
2.直线的两种位置关系
当不重合的两条直线l1和l2的斜率存在时:
(1)两直线平行:l1∥l2 k1=k2.
(2)两直线垂直:l1⊥l2 k1·k2=-1.
注意:当一条直线的斜率为0,另一条直线的斜率不存在时,两直线也垂直,此种情形易忽略.
3.三种距离公式
(1)A(x1,y1),B(x2,y2)两点间的距离
注意:应用两平行线间距离公式时,两平行线方程中x,y的系数应对应相等.
4.圆的方程的两种形式
(1)圆的标准方程:(x-a)2+(y-b)2=r2.
(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).
5.直线与圆、圆与圆的位置关系
(1)直线与圆的位置关系:相交、相切、相离,常用代数法与几何法判断.
(2)圆与圆的位置关系:相交、内切、外切、外离、内含,常用代数法与几何法判断.
6.圆锥曲线的定义、标准方程与几何性质
7.直线与圆锥曲线的位置关系
判断方法:通过解直线方程与圆锥曲线方程联立得到的方程组进行判断.
8.解决范围、最值问题的常用解法
(1)数形结合法:利用待求量的几何意义,确定出极端位置后,数形结合求解.
(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为未知数的不等式求解.
(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.
9.定点问题的思路
(1)动直线l过定点问题,解法:设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).
(2)动曲线C过定点问题,解法:引入参变量建立曲线C的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.
10.求解定值问题的两大途径
途径一:
由特例得出一个值(此值一般就是定值)→证明定值:将问题转化为证明待证式与参数(某些变量)无关
途径二:先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使相等的项抵消或分子、分母约分得定值.
11.解决存在性问题的解题步骤
第一步:先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组);
第二步:解此方程(组)或不等式(组),若有解则存在,若无解则不存在;
第三步:得出结论.
易错提醒
1.不能准确区分直线倾斜角的取值范围以及斜率与倾斜角的关系,导致由斜率的取值范围确定倾斜角的范围时出错.
2.易忽视直线方程的几种形式的限制条件,如根据直线在两轴上的截距相等设方程时,忽视截距为0的情况,直接设为 =1;再如,过定点P(x0,y0)的直线易忽视斜率不存在的情况直接设为y-y0=k(x-x0)等.
3.讨论两条直线的位置关系时,易忽视系数等于零时的讨论导致漏解,如两条直线垂直时,一条直线的斜率不存在,另一条直线斜率为0.
4.在解析几何中,研究两条直线的位置关系时,要注意有可能这两条直线重合;在立体几何中提到的两条直线,一般可理解为它们不重合.
5.求解两条平行线之间的距离时,易忽视两直线系数不相等,而直接代入公
6.在圆的标准方程中,误把r2当成r;在圆的一般方程中,忽视方程表示圆的条件.
7.易误认为两圆相切即为两圆外切,忽视两圆内切的情况导致漏解.
8.利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.
9.易混淆椭圆的标准方程与双曲线的标准方程,尤其是方程中a,b,c三者之间的关系,导致计算错误.
10.已知双曲线的渐近线方程求双曲线的离心率时,易忽视讨论焦点所在坐标轴导致漏解.
11.直线与圆锥曲线相交的必要条件是它们构成的方程组有实数解,消元后得到的方程中要注意:二次项的系数是否为零,判别式Δ≥0的限制.尤其是在应用根与系数的关系解决问题时,必须先有“判别式Δ≥0”.
同课章节目录