(共68张PPT)
第二篇
经典专题突破 核心素养提升
专题四 统计与概率
第1讲 统计与统计案例
高考对本讲内容的考查往往以实际问题为背景,考查随机抽样与用样本估计总体,线性回归方程的求解与运用,独立性检验问题.常与概率综合考查,中等难度.
考情分析
自主先热身 真题定乾坤
核心拔头筹 考点巧突破
专题勇过关 能力巧提升
自主先热身 真题定乾坤
1.(2021·全国甲卷)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
真题热身
根据此频率分布直方图,下面结论中不正确的是 ( )
A.该地农户家庭年收入低于4.5万元的农户比率估计为6%
B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%
C.估计该地农户家庭年收入的平均值不超过6.5万元
D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
C
【解析】 对于A,该地农户家庭年收入低于4.5万元的农户比率为(0.02+0.04)×1=0.06=6%,故选项A正确;
对于B,该地农户家庭年收入不低于10.5万元的农户比率为(0.04+0.02×3)×1=0.1=10%,故选项B正确;
对于C,估计该地农户家庭年收入的平均值为3×0.02+4×0.04+5×0.1+6×0.14+7×0.2+8×0.2+9×0.1+10×0.1+11×0.04+12×0.02+13×0.02+14×0.02=7.68>6.5万元,故选项C错误;
对于D,家庭年收入介于4.5万元至8.5万元之间的频率为(0.1+0.14+0.2+0.2)×1=0.64>0.5,故估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间,故选项D正确.故选C.
2.(2022·全国甲卷)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率
如图:
则 ( )
A.讲座前问卷答题的正确率的中位数小于70%
B.讲座后问卷答题的正确率的平均数大于85%
C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
B
3.(2022·全国乙卷)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m2)和材积量(单位:m3),得到如下数据:
样本号i 1 2 3 4 5 6 7 8 9 10 总和
根部横
截面积
xi 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6
材积
量yi 0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186 m2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
4.(2022·全国甲卷)甲、乙两城之间长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
准点班次数 未准点班次数
A 240 20
B 210 30
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
P(K2≥k) 0.100 0.050 0.010
k 2.706 3.841 6.635
(2)列联表
准点班次数 未准点班次数 合计
A 240 20 260
B 210 30 240
合计 450 50 500
1.统计与统计案例在选择或填空题中的命题热点主要集中在随机抽样、用样本估计总体以及变量间的相关性判断等,难度较低,常出现在3~4题的位置.
2.统计的解答题多在第19或20题的位置,多与概率知识交汇考查,交汇点主要有两种:频率分布直方图与随机变量的分布列、数学期望、方差、正态分布相交汇考查;频率分布直方图与线性回归或独立性检验相交汇来考查,难度中等.
感悟高考
核心拔头筹 考点巧突破
考点一 统计图表
频率分布直方图中:
(1)最高的小长方形底边中点的横坐标即众数.
(2)中位数左边和右边的小长方形的面积和相等.
(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.
(1)(2021·济南市模拟考试)如图是某地区2001年至2021年环境保护建设投资额(单位:万元)的折线图.
典例1
根据该折线图判断,下列结论正确的是 ( )
A.为预测该地2022年的环境保护建设投资额,应用2001年至2021年的数据建立回归模型更可靠
B.为预测该地2022年的环境保护建设投资额,应用2010年至2021年的数据建立回归模型更可靠
C.投资额与年份负相关
D.投资额与年份的相关系数r<0
B
【解析】因2009年之前与2010年之后投资额变化较大,故为预测该地2022年的环境保护建设投资额,应用2010年至2021年的数据建立回归模型更可靠,所以A错误,B正确;随年份的增长,投资额总体上在增长,所以投资额与年份正相关,r>0,故C、D错误.故选B.
(2)某班40名学生参加普法知识竞赛,成绩都在区间[40,100]内,其频率分布直方图如图所示,则成绩不低于60分的人数为_____.
30
【解析】根据频率分布直方图可得成绩不低于60分的学生的频率为
(0.015+0.030+0.025+0.005)×10=0.75,
则成绩不低于60分的学生人数为40×0.75=30.
【易错提醒】(1)对于给出的统计图表,一定要结合问题背景理解图表意义,不能似懂非懂.
(2)频率分布直方图中纵坐标不要误以为频率.
1.(1)(2020·四省八校双教研联考)如图1为某省2019年1~4月份快递业务量统计图,图2为该省2019年1~4月份快递业务收入统计图,对统计图理解错误的是 ( )
A.2019年1~4月份快递业务量3月份最高,2月份最低,差值接近2 000万件
B.2019年1~4月份快递业务量同比增长率均超过50%,在3月份最高,和春节蛰伏后网购迎来喷涨有关
C.从两图中看,增量与增长速度并不完全一致,但业务量与业务收入变化高度一致
D.从1~4月份来看,业务量与业务收入有波动,但整体保持高速增长
【答案】 D
(2)(2020·重庆模拟)新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考),其中“选择考”成绩将计入高考总成绩,即将学生考试时的原始卷面分数由高到低进行排序,评定为A,B,C,D,E五个等级,再转换为分数计入高考总成绩.某试点高中2020年参加“选择考”总人数是2018年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2018年和2020年“选择考”成绩等级结果,得到如图所示的统计图.
针对该校“选择考”情况,2020年与2018年比较,下列说法正确的是 ( )
A.获得A等级的人数增加了
B.获得B等级的人数增加了1倍
C.获得D等级的人数减少了一半
D.获得E等级的人数相同
A
【解析】(1)对于A,2019年1~4月份快递业务量3月份最高,有4 397万件,2月份最低,有2 411万件,其差值接近2 000万件,所以A正确;对于B,2019年1~4月份快递业务量的同比增长率分别为55%,53%,62%,58%,均超过50%,在3月份最高,和春节蛰伏后网购迎来喷涨有关,所以B正确;对于C,由两图易知增量与增长速度并不完全一致,其业务量从高到低变化是3月→4月→1月→2月,业务收入从高到低变化是3月→4月→1月→2月,保持高度一致,所以C正确;对于D,由图知业务收入2月对1月减少,4月对3月减少,整体不具备高速增长之说,所以D不正确.故选D.
(2)设2018年参加“选择考”的总人数为x,则2020年参加“选择考”的总人数为2x,根据图表得出2018年和2020年各个等级的人数如表所示.
等级
年份 A B C D E
2018 0.28x 0.32x 0.30x 0.08x 0.02x
2020 0.48x 0.8x 0.56x 0.12x 0.04x
考点二 回归分析
为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,教育部开展了招生改革工作——强基计划.现对某高中学校学生对强基课程学习的情况进行调查,在参加数学和物理的强基计划课程学习的学生中,随机抽取了10名学生.
(1)在某次数学强基课程的测试中,这10名学生成绩的统计数据如图所示,其中某男生的成绩被污损(为整数),求女生的平均分数超过男生的平均分数的概率;
典例2
女生 89 88 93 92 91
男生 87 86 83 99 9?
(2)已知学生的物理成绩y与数学成绩x是线性相关的,现统计了小明同学连续5次在强基课程测试中的数学和物理成绩(如下表).若第6次测试该生的数学成绩达到132,请你估计第6次测试他的物理成绩大约是多少?
数学成绩x 120 118 116 122 124
物理成绩y 79 79 77 82 83
2.(1)(2022·安徽高三模拟)下列说法错误的是 ( )
A.相关系数r越大,两个变量的线性相关性越强
B.若X~N(2,σ2),且P(1<X≤3)=0.5,则P(X>3)=0.25
C.相关指数R2=0.64,表示解释变量对于预报变量变化的贡献率为64%
D.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高
A
(2)(2021·河北衡水中学月考)有一散点图如图所示,在5个(x,y)数据中去掉D(3,10)后,下列说法正确的是 ( )
A.残差平方和变小
B.相关系数r变小
C.相关指数R2变小
D.解释变量x与预报变量y的相关性变弱
A
(2)∵从散点图可分析得出:
只有D点偏离直线远,去掉D点,解释变量x与预报变量y的线性相关性变强,
∴相关系数变大,相关指数变大,残差平方和变小,故选A.
假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:
考点三 独立性检验
y1 y2 总计
x1 a b a+b
x2 c d c+d
总计 a+c b+d a+b+c+d
(2020·新高考全国Ⅰ)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:
典例3
SO2
PM2.5 [0,50] (50,150] (150,475]
[0,35] 32 18 4
(35,75] 6 8 12
(75,115] 3 7 10
(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;
(2)根据所给数据,完成下面的2×2列联表:
SO2
PM2.5 [0,150] (150,475]
[0,75]
(75,115]
(2)由所给数据,可得2×2列联表:
SO2
PM2.5 [0,150] (150,475]
[0,75] 64 16
(75,115] 10 10
【素养提升】独立性检验的关键
(1)根据2×2列联表准确计算K2,若2×2列联表没有列出来,要先列出此表.
(2)K2的观测值k越大,对应的假设H0成立的概率越小,H0不成立的概率越大.
3.(1)在某大学一食品超市,随机询问了70名不同性别的大学生在购买食物时是否查看营养说明,得到如下的列联表:
女 男 总计
要查看营养说明 15 25 40
不查看营养说明 20 10 30
总计 35 35 70
C
P(K2≥k0) 0.050 0.010
k0 3.841 6.635
A (共46张PPT)
第二篇
经典专题突破 核心素养提升
专题四 统计与概率
第2讲 概率、随机变量及其分布
1.考查古典概型、几何概型、互斥事件、相互独立事件、独立重复试验等内容,主要以选择题、填空题的形式出现,中低等难度.
2.离散型随机变量的分布列、均值、方差和概率的计算问题常常结合在一起进行考查,中高等难度.
考情分析
自主先热身 真题定乾坤
核心拔头筹 考点巧突破
专题勇过关 能力巧提升
自主先热身 真题定乾坤
1.(2022·全国新高考Ⅰ卷)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为 ( )
真题热身
D
2.(2022·全国甲卷)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为
( )
C
【解析】 从6张卡片中无放回抽取2张,共有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),15种情况,
其中数字之积为4的倍数的有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6),6种情况,
3.(2022·全国乙卷)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为_____.
4.(2022·全国甲卷)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为_____.
5.(2022·全国新高考Ⅱ卷)已知随机变量X服从正态分布N(2,σ2),且P(22.5)=_______.
【解析】 因为X~N(2,σ2),
所以P(X<2)=P(X>2)=0.5,
因此P(X>2.5)=P(X>2)-P(20.14
6.(2022·全国甲卷)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)求甲学校获得冠军的概率;
(2)用X表示乙学校的总得分,求X的分布列与期望.
(2)依题可知,X的可能取值为0,10,20,30,所以,
P(X=0)=0.5×0.4×0.8=0.16,
P(X=10)=0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.44,
P(X=20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34,
P(X=30)=0.5×0.6×0.2=0.06.
即X的分布列为
期望E(X)=0×0.16+10×0.44+20×0.34+30×0.06=13.
X 0 10 20 30
P 0.16 0.44 0.34 0.06
1.概率、随机变量及其分布列是高考命题的热点之一,命题形式为“一小一大”,即一道选择或填空题和一道解答题.
2.选择或填空题常出现在第4~10题或第13~15题的位置,主要考查随机事件的概率、古典概型、几何概型,难度一般.
3.近几年概率的解答题的难度有所增加,位置有时在20或21题.
感悟高考
核心拔头筹 考点巧突破
古典概型的概率公式
考点一 古典概型
典例1
B
(2)(2021·重庆高三三模)孪生素数猜想是希尔伯特在1900年提出的23个问题中的第8个:存在无穷多个素数p,使得p+2是素数,素数对(p,p+2)称为孪生素数,2013年华人数学家张益唐发表的论文《素数间的有界距离》第一次证明了存在无穷多组间距小于定值的素数对,那么在不超过16的素数中任意取出不同的两个,可组成孪生素数的概率为
( )
A
【素养提升】古典概型求解的关键点
(1)正确求出基本事件总数和所求事件包含的基本事件数,这常常用到排列、组合的有关知识.
(2)对于较复杂的题目计数时要正确分类,分类时应不重不漏.
1.(1)纸箱里有编号为1到9的9个大小相同的球,从中不放回地随机取9次,每次取1个球,则编号为偶数的球被连续抽取出来的概率为
( )
C
(2)河图是上古时代神话传说中伏羲通过黄河中浮出龙马身上的图案,与自己的观察,画出的“八卦”,而龙马身上的图案就叫做“河图”.把一到十分成五组,如图,其口诀:一六共宗,为水居北;二七同道,为火居南;三八为朋,为木居东;四九为友,为金居西;五十同途,为土居中.现从这十个数中随机抽取四个数,则能成为两组的概率是 ( )
C
考点二 随机变量的分布列
考向一 超几何分布
4月23日是“世界读书日”,某中学开展了一系列的读书教育活动.学校为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生中抽取12名学生参加问卷调查.各组人数统计如下:
典例2
小组 甲 乙 丙 丁
人数 12 9 6 9
(1)从参加问卷调查的12名学生中随机抽取2人,求这2人来自同一个小组的概率;
(2)从已抽取的甲、丙两个小组的学生中随机抽取2个,用X表示抽得甲组学生的人数,求随机变量X的分布列和均值.
2.PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2018年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:
(1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;
(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列.
PM2.5日均
值(微克/
立方米) [25,35) [35,45) [45,55) [55,65) [65,75) [75,85]
频数 3 1 1 1 1 3
考向二 二项分布
(2022·四川德阳市模拟)某校数学教研组,为更好地提高该校高三学生《圆锥曲线》的选填题的得分率,对学生《圆锥曲线》的选填题的训练运用最新的教育技术做了更
好的创新,其学校教务处为了检测其质量
指标,从中抽取了100名学生的训练成绩
(总分50分),经统计质量指标得到如图所
示的频率分布直方图.
典例3
【解析】 (1)根据频率分布直方图可得各组的频率为:
[0,10]的频率为:0.010×10=0.1;
(10,20]的频率为:0.020×10=0.2;
(20,30]的频率为:0.030×10=0.3;
(30,40]的频率为:0.025×10=0.25;
(40,50]的频率为:0.015×10=0.15,
【素养提升】随机变量分布列问题的两个关键点
(1)求离散型随机变量分布列的关键是正确理解随机变量取每一个值所表示的具体事件,然后综合应用各类概率公式求概率.
(2)求随机变量均值与方差的关键是正确求出随机变量的分布列,若随机变量服从二项分布,则可直接使用公式求解.
3.(2022·潍坊模拟)某公司生产一种消毒液,为测试消杀效果,测试车间用该消毒液对8个染菌不锈钢载片进行测试:第一轮测试,逐一对这8个载片进行消杀检测,若检测出不超过1个载片没有消杀效果,则该消毒液合格,测试结束;否则,10分钟后对没有产生消杀效果的载片进行第二轮测试,如果第二轮被测试的载片都产生消杀效果,则消毒液合格,否则需要对该消毒液成分进行改良.假设每个染菌载片是否产生消杀效果相互独立,每次消杀检测互不影响,且每次消杀检测每一个染菌载片产生效果的概率均为p(0<p<1).
(1)求经过第一轮测试该消毒液即合格的概率;
(2)每进行一次载片测试视为一次检测,设检测次数ξ的数学期望为E(ξ),求证:8<E(ξ)<16-8p.
【解析】(1)由题意可得经过第一轮测试该消毒液即合格有两种情况:8个载片均有效果,或7个载片均有效果.
(2)证明:第一轮测试,逐一对这8个载片进行消杀检测,共检测8次,第一轮未产生效果的有8-8p个载片.
因此第二轮检测的次数为8-8p,
∴E(ξ)=8+8-8p=16-8p,即为最多次数.
∴8<E(ξ)<16-8p.(0<p<1).