第17讲 数列的通项、求和及数列不等式的证明
真题展示
2022新高考一卷第17题
记为数列的前项和,已知,是公差为的等差数列.
(1)求的通项公式;
(2)证明:.
【思路分析】(1)直接利用数列的递推关系式的应用求出数列的通项公式;
(2)利用(1)的结论,进一步利用裂项相消法的应用求出数列的和,进一步利用放缩法的应用求出结果.
【解析】(1)解:【解法一】(隔项累乘法):已知,是公差为的等差数列,
所以,整理得,①,
故当时,,②,
①②得:,
故,
化简得:,,,,,,;
所以,
故(首项符合通项).所以.
【解法二】(王安寓补解)(相邻累乘):仿法一得,
∴=1×=,
显然 n=1时=1适合上式,故=.
【解法三】(王安寓补解)(构造常数列):仿法一得(n 1)=(n+1),
即n(n 1)=(n+1)n,,故{}是常数列,∴=,∴=.
(2)证明:由于,
所以,
所以.
【试题评价】本题考查的知识要点:数列的递推关系式,数列的通项公式的求法,数列的求和,裂项相消法在数列求和中的应用,主要考查学生的运算能力和数学思维能力,属于中档题.
试题亮点
试题以考生熟悉的等差数列为载体而设计,但不是通常的给定等差数列求通项、求和等常规操作,而是将等差数列的性质融合在前n项和与通项的关系之中,特别是第(2)问中的数列的求和运算涉及裂项相消.试题源于教材、其创新思想又高于教材,充分体现高考的选拔功能.试题对高中数学教学具有指导作用,要求考生在强化基本功的同时,加强对知识的灵活运用,形成学科素养.
知识要点整理
数列求和问题
数列求和是数列问题中的基本题型,是数列部分的重点内容,在高考中也占据重要地位,它具有复杂多变、综合性强、解法灵活等特点.数列求和的方法主要有公式法、分组转化法、倒序相加法、错位相减法、裂项相消法、并项求和法等.
一、公式法求和
例1 求数列1,3+5,7+9+11,13+15+17+19,…的前n项和.
解 所求数列的前n项中共有1+2+3+4+…+n=个连续的奇数,这些奇数组成等差数列,首项为1,公差为2,故该数列的前n项和
Sn=×1+×××2
=+
=2
=.
反思感悟 公式法求和中的常用公式有
(1)等差、等比数列的前n项和
①等差数列:Sn=na1+d(d为公差)或Sn=.
②等比数列:Sn=其中q为公比.
(2)四类特殊数列的前n项和
①1+2+3+…+n=n(n+1).
②1+3+5+…+(2n-1)=n2.
③12+22+32+…+n2=n(n+1)(2n+1).
④13+23+33+…+n3=n2(n+1)2.
二、分组转化法求和
例2 求和:Sn=2+2+…+2(x≠0).
解 当x≠±1时,
Sn=2+2+…+2
=++…+
=(x2+x4+…+x2n)+2n+
=++2n
=+2n;
当x=±1时,Sn=4n.
综上可知,
Sn=
反思感悟 某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列的和.
三、倒序相加法求和
例3 设F(x)=,求F+F+…+F.
解 ∵F(x)+F(1-x)=+=1,
∴F+F=F+F=…=1.
设F+F+…+F=S,
∴S=×2S=×2 020=1 010.
反思感悟 (1)倒序相加法类比推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an).
(2)如果一个数列{an},首末两端等“距离”的两项的和相等,那么求其和可以用倒序相加法.
四、裂项相消法求和
例4 求和:+++…+,n≥2,n∈N*.
解 ∵==,
∴原式==
=-(n≥2,n∈N*).
延伸探究
求和:+++…+,n≥2,n∈N*.
解 ∵==1+,
∴原式=+++…+
=(n-1)+
以下同例4解法.
∴原式= n--(n≥2,n∈N*)
反思感悟 (1)对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”,分式的求和多利用此法,可用待定系数法对通项公式拆项,相消时应注意消去项的规律,即消去哪些项,保留哪些项.
(2)常见的拆项公式有
①=-.
②=.
③=.
④=-.
⑤=.
五、错位相减法求和
例5 已知{an}是等比数列,{bn}是等差数列,且a1=1,b1=3,a2+b2=7,a3+b3=11.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=,n∈N*,求数列{cn}的前n项和Tn.
解 (1)设等比数列{an}的公比为q(q≠0),等差数列{bn}的公差为d,
依题意有
即解得或(舍去).
所以an=2n-1,n∈N*,bn=3+2(n-1)=2n+1,n∈N*.
(2)由(1)得cn==,
所以Tn=++…+,①
所以Tn=++…++,②
由①-②,得Tn=3+2-=3+2×-=5-,
所以Tn=10-.
反思感悟 一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便于下一步准确写出“Sn-qSn”的表达式.
六、并项求和法求和
例6 求和:Sn=-1+3-5+7-…+(-1)n(2n-1).
解 当n为奇数时,
Sn=(-1+3)+(-5+7)+(-9+11)+…+[(-2n+5)+(2n-3)]+(-2n+1)
=2·+(-2n+1)=-n.
当n为偶数时,
Sn=(-1+3)+(-5+7)+…+[(-2n+3)+(2n-1)]=2·=n.
∴Sn=(-1)n·n (n∈N*).
反思感悟 通项中含有(-1)n的数列求前n项和时可以考虑使用奇偶并项法,分项数为奇数和偶数分别进行求和.
三年真题
1.设是等差数列,是等比数列,且.
(1)求与的通项公式;
(2)设的前n项和为,求证:;
(3)求.
【答案】(1)
(2)证明见解析
(3)
【详解】(1)设公差为d,公比为,则,
由可得(舍去),
所以;
(2)证明:因为所以要证,
即证,即证,
即证,
而显然成立,所以;
(3)因为
,
所以
,
设
所以,
则,
作差得
,
所以,
所以.
2.已知为等差数列,是公比为2的等比数列,且.
(1)证明:;
(2)求集合中元素个数.
【答案】(1)证明见解析;
(2).
【详解】(1)设数列的公差为,所以,,即可解得,,所以原命题得证.
(2)由(1)知,,所以,即,亦即,解得,所以满足等式的解,故集合中的元素个数为.
3.已知等差数列的首项,公差.记的前n项和为.
(1)若,求;
(2)若对于每个,存在实数,使成等比数列,求d的取值范围.
【答案】(1)
(2)
【详解】(1)因为,
所以,
所以,又,
所以,
所以,
所以,
(2)因为,,成等比数列,
所以,
,
,
由已知方程的判别式大于等于0,
所以,
所以对于任意的恒成立,
所以对于任意的恒成立,
当时,,
当时,由,可得
当时,,
又
所以
4.已知函数.
(1)当时,讨论的单调性;
(2)当时,,求a的取值范围;
(3)设,证明:.
【答案】(1)的减区间为,增区间为.
(2)
(3)见解析
【详解】(1)当时,,则,
当时,,当时,,
故的减区间为,增区间为.
(2)设,则,
又,设,
则,
若,则,
因为为连续不间断函数,
故存在,使得,总有,
故在为增函数,故,
故在为增函数,故,与题设矛盾.
若,则,
下证:对任意,总有成立,
证明:设,故,
故在上为减函数,故即成立.
由上述不等式有,
故总成立,即在上为减函数,
所以.
当时,有,
所以在上为减函数,所以.
综上,.
(3)取,则,总有成立,
令,则,
故即对任意的恒成立.
所以对任意的,有,
整理得到:,
故
,
故不等式成立.
【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.
5.记为数列的前n项和.已知.
(1)证明:是等差数列;
(2)若成等比数列,求的最小值.
【答案】(1)证明见解析;
(2).
【详解】(1)因为,即①,
当时,②,
①②得,,
即,
即,所以,且,
所以是以为公差的等差数列.
(2)[方法一]:二次函数的性质
由(1)可得,,,
又,,成等比数列,所以,
即,解得,
所以,所以,
所以,当或时,.
[方法二]:【最优解】邻项变号法
由(1)可得,,,
又,,成等比数列,所以,
即,解得,
所以,即有.
则当或时,.
【整体点评】(2)法一:根据二次函数的性质求出的最小值,适用于可以求出的表达式;
法二:根据邻项变号法求最值,计算量小,是该题的最优解.
6.已知为有穷整数数列.给定正整数m,若对任意的,在Q中存在,使得,则称Q为连续可表数列.
(1)判断是否为连续可表数列?是否为连续可表数列?说明理由;
(2)若为连续可表数列,求证:k的最小值为4;
(3)若为连续可表数列,且,求证:.
【答案】(1)是连续可表数列;不是连续可表数列.
(2)证明见解析.
(3)证明见解析.
【详解】(1),,,,,所以是连续可表数列;易知,不存在使得,所以不是连续可表数列.
(2)若,设为,则至多,6个数字,没有个,矛盾;
当时,数列,满足,,,,,,,, .
(3),若最多有种,若,最多有种,所以最多有种,
若,则至多可表个数,矛盾,
从而若,则,至多可表个数,
而,所以其中有负的,从而可表1~20及那个负数(恰 21个),这表明中仅一个负的,没有0,且这个负的在中绝对值最小,同时中没有两数相同,设那个负数为 ,
则所有数之和,,
,再考虑排序,排序中不能有和相同,否则不足个,
(仅一种方式),
与2相邻,
若不在两端,则形式,
若,则(有2种结果相同,方式矛盾),
, 同理 ,故在一端,不妨为形式,
若,则 (有2种结果相同,矛盾),同理不行,
,则 (有2种结果相同,矛盾),从而,
由于,由表法唯一知3,4不相邻,、
故只能,①或,②
这2种情形,
对①:,矛盾,
对②:,也矛盾,综上,
当时,数列满足题意,
.
【点睛】关键点睛,先理解题意,是否为可表数列核心就是是否存在连续的几项(可以是一项)之和能表示从到中间的任意一个值.本题第二问时,通过和值可能个数否定;第三问先通过和值的可能个数否定,再验证时,数列中的几项如果符合必然是的一个排序,可验证这组数不合题.
7.记为数列的前n项和,已知是公差为的等差数列.
(1)求的通项公式;
(2)证明:.
【答案】(1)
(2)见解析
【详解】(1)∵,∴,∴,
又∵是公差为的等差数列,
∴,∴,
∴当时,,
∴,
整理得:,
即,
∴
,
显然对于也成立,
∴的通项公式;
(2)
∴
8.已知是公差为2的等差数列,其前8项和为64.是公比大于0的等比数列,.
(I)求和的通项公式;
(II)记,
(i)证明是等比数列;
(ii)证明
【答案】(I),;(II)(i)证明见解析;(ii)证明见解析.
【详解】(I)因为是公差为2的等差数列,其前8项和为64.
所以,所以,
所以;
设等比数列的公比为,
所以,解得(负值舍去),
所以;
(II)(i)由题意,,
所以,
所以,且,
所以数列是等比数列;
(ii)由题意知,,
所以,
所以,
设,
则,
两式相减得,
所以,
所以.
【点睛】关键点点睛:
最后一问考查数列不等式的证明,因为无法直接求解,应先放缩去除根号,再由错位相减法即可得证.
9.记是公差不为0的等差数列的前n项和,若.
(1)求数列的通项公式;
(2)求使成立的n的最小值.
【答案】(1);(2)7.
【分析】(1)由题意首先求得的值,然后结合题意求得数列的公差即可确定数列的通项公式;
(2)首先求得前n项和的表达式,然后求解二次不等式即可确定n的最小值.
【详解】(1)由等差数列的性质可得:,则:,
设等差数列的公差为,从而有:,
,
从而:,由于公差不为零,故:,
数列的通项公式为:.
(2)由数列的通项公式可得:,则:,
则不等式即:,整理可得:,
解得:或,又为正整数,故的最小值为.
10.设p为实数.若无穷数列满足如下三个性质,则称为数列:
①,且;
②;
③,.
(1)如果数列的前4项为2,-2,-2,-1,那么是否可能为数列?说明理由;
(2)若数列是数列,求;
(3)设数列的前项和为.是否存在数列,使得恒成立?如果存在,求出所有的p;如果不存在,说明理由.
【答案】(1)不可以是数列;理由见解析;(2);(3)存在;.
【详解】(1)因 为 所以,
因 为所 以
所以数列,不可能是数列.
(2)性质①,
由性质③,因此或,或,
若,由性质②可知,即或,矛盾;
若,由有,矛盾.
因此只能是.
又因为或,所以或.
若,则,
不满足,舍去.
当,则前四项为:0,0,0,1,
下面用数学归纳法证明:
当时,经验证命题成立,假设当时命题成立,
当时:
若,则,利用性质③:
,此时可得:;
否则,若,取可得:,
而由性质②可得:,与矛盾.
同理可得:
,有;
,有;
,又因为,有
即当时命题成立,证毕.
综上可得:,.
(3)令,由性质③可知:
,
由于,
因此数列为数列.
由(2)可知:
若;
,,
因此,此时,,满足题意.
11.记为数列的前n项和,已知,且数列是等差数列,证明:是等差数列.
【答案】证明见解析.
【详解】∵数列是等差数列,设公差为
∴,
∴,
∴当时,
当时,,满足,
∴的通项公式为,
∴
∴是等差数列.
12.已知数列的前n项和为,,且.
(1)求数列的通项;
(2)设数列满足,记的前n项和为,若对任意恒成立,求实数的取值范围.
【答案】(1);(2).
【详解】(1)当时,,
,
当时,由①,
得②,①②得
,
又是首项为,公比为的等比数列,
;
(2)由,得,
所以,
,
两式相减得
,
所以,
由得恒成立,
即恒成立,
时不等式恒成立;
时,,得;
时,,得;
所以.
【点睛】易错点点睛:(1)已知求不要忽略情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中恒成立,要对讨论,还要注意时,分离参数不等式要变号.
13.记为数列的前n项和,为数列的前n项积,已知.
(1)证明:数列是等差数列;
(2)求的通项公式.
【答案】(1)证明见解析;(2).
【详解】(1)[方法一]:
由已知得,且,,
取,由得,
由于为数列的前n项积,
所以,
所以,
所以,
由于
所以,即,其中
所以数列是以为首项,以为公差等差数列;
[方法二]【最优解】:
由已知条件知 ①
于是. ②
由①②得. ③
又, ④
由③④得.
令,由,得.
所以数列是以为首项,为公差的等差数列.
[方法三]:
由,得,且,,.
又因为,所以,所以.
在中,当时,.
故数列是以为首项,为公差的等差数列.
[方法四]:数学归纳法
由已知,得,,,,猜想数列是以为首项,为公差的等差数列,且.
下面用数学归纳法证明.
当时显然成立.
假设当时成立,即.
那么当时,.
综上,猜想对任意的都成立.
即数列是以为首项,为公差的等差数列.
(2)
由(1)可得,数列是以为首项,以为公差的等差数列,
,
,
当n=1时,,
当n≥2时,,显然对于n=1不成立,
∴.
【整体点评】(1)方法一从得,然后利用的定义,得到数列的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论;
方法二先从的定义,替换相除得到,再结合得到,从而证得结论,为最优解;
方法三由,得,由的定义得,进而作差证得结论;方法四利用归纳猜想得到数列,然后利用数学归纳法证得结论.
(2)由(1)的结论得到,求得的表达式,然后利用和与项的关系求得的通项公式;
14.已知数列的各项均为正数,记为的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.
①数列是等差数列:②数列是等差数列;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
【答案】证明过程见解析
【详解】选①②作条件证明③:
[方法一]:待定系数法+与关系式
设,则,
当时,;
当时,;
因为也是等差数列,所以,解得;
所以,,故.
[方法二] :待定系数法
设等差数列的公差为d,等差数列的公差为,
则,将代入,
化简得对于恒成立.
则有,解得.所以.
选①③作条件证明②:
因为,是等差数列,
所以公差,
所以,即,
因为,
所以是等差数列.
选②③作条件证明①:
[方法一]:定义法
设,则,
当时,;
当时,;
因为,所以,解得或;
当时,,当时,满足等差数列的定义,此时为等差数列;
当时,,不合题意,舍去.
综上可知为等差数列.
[方法二]【最优解】:求解通项公式
因为,所以,,因为也为等差数列,所以公差,所以,故,当时,,当时,满足上式,故的通项公式为,所以,,符合题意.
【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于的一次函数,直接设出,平方后得到的关系式,利用得到的通项公式,进而得到,是选择①②证明③的通式通法;法二:分别设出与的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,,进而得到;选①③时,按照正常的思维求出公差,表示出及,进而由等差数列定义进行证明;选②③时,法一:利用等差数列的通项公式是关于的一次函数,直接设出,结合的关系求出,根据可求,然后可证是等差数列;法二:利用是等差数列即前两项的差求出公差,然后求出的通项公式,利用,求出的通项公式,进而证明出结论.
15.设是首项为1的等比数列,数列满足.已知,,成等差数列.
(1)求和的通项公式;
(2)记和分别为和的前n项和.证明:.
【答案】(1),;(2)证明见解析.
【详解】(1)因为是首项为1的等比数列且,,成等差数列,
所以,所以,
即,解得,所以,
所以.
(2)[方法一]:作差后利用错位相减法求和
,
,
.
设, ⑧
则. ⑨
由⑧-⑨得.
所以.
因此.
故.
[方法二]【最优解】:公式法和错位相减求和法
证明:由(1)可得,
,①
,②
①②得 ,
所以,
所以,
所以.
[方法三]:构造裂项法
由(Ⅰ)知,令,且,即,
通过等式左右两边系数比对易得,所以.
则,下同方法二.
[方法四]:导函数法
设,
由于,
则.
又,
所以
,下同方法二.
16.已知数列满足,
(1)记,写出,,并求数列的通项公式;
(2)求的前20项和.
【答案】(1);(2).
【详解】解:(1)[方法一]【最优解】:
显然为偶数,则,
所以,即,且,
所以是以2为首项,3为公差的等差数列,
于是.
[方法二]:奇偶分类讨论
由题意知,所以.
由(为奇数)及(为偶数)可知,
数列从第一项起,
若为奇数,则其后一项减去该项的差为1,
若为偶数,则其后一项减去该项的差为2.
所以,则.
[方法三]:累加法
由题意知数列满足.
所以,
,
则.
所以,数列的通项公式.
(2)[方法一]:奇偶分类讨论
.
[方法二]:分组求和
由题意知数列满足,
所以.
所以数列的奇数项是以1为首项,3为公差的等差数列;
同理,由知数列的偶数项是以2为首项,3为公差的等差数列.
从而数列的前20项和为:
.
三年模拟
一、单选题
1.已知角的终边不在坐标轴上,则下列一定成等比数列的是( )
A. B.
C. D.
【答案】D
【详解】对于A,令,则,
所以,即,故A错误;
对于B,令,则,即,故B错误;
对于C,令,则,
所以,即,故C错误;
对于D,因为角的终边不在坐标轴上,所以,,,
所以,即,则,
所以一定成等比数列,故D正确.
故选:D.
2.已知数列的前项和为,首项,且满足,则的值为( )
A.4093 B.4094 C.4095 D.4096
【答案】A
【解答】,故,又,
所以是首项为,公比为的等比数列,所以,
则
故选:A
3.已知数列为等差数列,为等比数列的前n项和,且,,,,则( )
A. B. C. D.
【答案】D
【详解】设等差数列的公差为d,由得,解得,
则,所以,,
设等比数列的公比为q,则,
则,
故选:D.
二、填空题
4.设是由正整数组成且项数为的增数列,已知,,数列任意相邻两项的差的绝对值不超过1,若对于中任意序数不同的两项和,在剩下的项中总存在序数不同的两项和,使得,则的最小值为___________.
【答案】
【详解】因为数列任意相邻两项的差的绝对值不超过1,,所以,
又是由正整数组成且项数为的增数列,所以或,
当时,,此时,
这与在剩下的项中总存在序数不同的两项和,使得矛盾,
所以,类似地,必有,,,,
由得前6项任意两项之和小于等于3时,均符合,
要最小,则每项尽可能小,且值要尽量小,
则,,
同理,,,…,,当中间各项为公差为1的等差数列时,可使得值最小,且满足已知条件.
由对称性得最后6项为,,
则的最小值.
【点睛】对于数列的新定义题,关键在于读懂题意.根据题意,可得出当时,或,根据已知,可推出数列的前6项以及后6项, 进而推得中间项和取的最小值应满足的条件.
5.已知项数为m的有限数列是1,2,3,…,m的一个排列.若,且,则所有可能的m值之和为______.
【答案】9
【详解】当时,显然不合题意;
当时,因为,
所以,不符合题意;
当时,数列为,此时,
符合题意,
当时,数列为.
此时,符合题意;
下证当时,不存在满足题意.
令,
则,且,
所以有以下三种可能: ①;
②; ③
当时,因为,
即.
所以或.
因为数列的各项互不相同,所以.
所以数列是等差数列.
则是公差为1(或的等差数列.
当公差为1时,由得或,
所以或,与已知矛盾.当公差为时,
同理得出与已知矛盾.
所以当时,不存在满足题意.
其它情况同理可得.
综上,的所有取值为4或5,故所有可能的值之和为9.
故答案为:9.
6.数列满足,,则__________
【答案】
【详解】由得:,
;
设,
则,
,
,
,即,
,,
.
故答案为:.
7.已知等差数列中,,则的值等于__________.
【答案】14
【详解】解:由题意得:
等差数列,所以设等差数列的首项为: ,公差为:
又,
故答案为:
8.已知公差为且各项均为正数的等差数列的前项和为,且,则的最小值为__________.
【答案】9
【详解】因为,则,化简得,
因为数列的各项均为正数,则,
则
当且仅当,即时取等号,
所以的最小值为9.
故答案为:9.
9.已知数列满足,且,表示数列的前n项和,则使不等式成立的正整数n的最小值是______.
【答案】10
【详解】因为数列满足且,所以数列是首项为2,公差为2的等差数列,
所以,所以,所以
.令,解得.
故答案为:10.
三、解答题
10.已知数列的前项和为,且成等比数列.
(1)求数列 的通项公式;
(2)设数列 的前项和,求证:.
【答案】(1)
(2)证明见解析
【详解】(1)因为 ,所以,即,所以数列是首项为,公差为 1 的等差数列,其公差.
由 成等比数列,得,
则 ,所以,
所以;
(2)由题可知 ,所以,
所以 ,
两式相减得 ,
所以 .
所以 ,又,
所以 是递增数列,,故.
11.已知数列的首项,且满足.
(1)求证:数列为等比数列;
(2)若,求满足条件的最大整数.
【答案】(1)证明见解析
(2)4
【详解】(1)由,可得,
,又,
故数列是以3为首项,3为公比的等比数列.
(2)由(1)可知,故.
.
令
易知随的增大而增大.
,故满足的最大整数为4.
12.近两年,直播带货逐渐成为一种新兴的营销模式,带来电商行业的新增长点.某直播平台第1年初的启动资金为500万元,由于一些知名主播加入,平台资金的年平均增长率可达,每年年底把除运营成本万元,再将剩余资金继续投入直播平合.
(1)若,在第3年年底扣除运营成本后,直播平台的资金有多少万元?
(2)每年的运营成本最多控制在多少万元,才能使得直播平台在第6年年底 除运营成本后资金达到3000万元?(结果精确到万元)
【答案】(1)936万元
(2)3000万元
【详解】(1)记为第年年底扣除运营成本后直播平台的资金,
则,
故第3年年底扣除运营成本后直播平台的资金为936万元.
(2),
由,得,
故运营成本最多控制在万元,
才能使得直播平台在第6年年底扣除运营成本后资金达到3000万元.
13.若函数是其定义域内的区间上的严格增函数,而是上的严格减函数,则称是上的“弱增函数”.若数列是严格增数列,而是严格减数列,则称是“弱增数列”.
(1)判断函数是否为上的“弱增函数”,并说明理由(其中是自然对数的底数);
(2)已知函数与函数的图像关于坐标原点对称,若是上的“弱增函数”,求的最大值;
(3)已知等差数列是首项为4的“弱增数列”,且公差d是偶数.记的前项和为,设是正整数,常数,若存在正整数和,使得且,求所有可能的值.
【答案】(1)是上的“弱增函数”,理由见解析
(2)1
(3)所有可能的值为和
【详解】(1)函数是上的“弱增函数”,理由如下:
显然,是上的严格增函数,
对于函数,,
当时,恒成立,
故是上的严格减函数,
从而是上的“弱增函数”.
(2)记,
由题意得,
,
由是上的“弱增函数”可得函数是上的严格增函数,而是上的严格减函数,
函数图像的对称轴为,且是区间上的严格增函数,
令,则,
当,即时,解得或,
当时,,则函数在上单调递减,
即函数是区间上的严格减函数,
由是上的“弱增函数”,得,
所以,
所以的最大值为1.
(3),
由是“弱增数列”得,即.
又因为d是偶数,所以,
从而.
故,
由得,所以当时,,即,
故若,则不存在和,使得.
从而.
若,解得,满足;
若,解得,满足;
若,解得,不满足.
当时,,故不存在大于5的正整数,使得.
综上,所有可能的值为和.
14.已知数列满足,记,在中每相邻两项之间都插入3个数,使它们和原数列的数一起构成一个新的正项等比数列,若数列中的第项是数列中的第项.
(1)求数列及的通项公式.
(2)求数列的前项和.
【答案】(1),
(2)
【详解】(1)因为,所以,因为,
所以,所以是首项为1,公比为2的等比数列,
所以.所以.由题意知.所以,即,
又,则.
所以.又,则,则.
(2)
,①
,②
①-②得,
.
所以.
15.已知数列是公差不为0的等差数列,,且,,成等比数列.
(1)求数列的通项公式;
(2)求当n为何值时,数列的前n项和取得最大值.
【答案】(1);
(2)或时,取得最大值.
【详解】(1)设数列的公差为d,,由,,成等比数列,得,即,解得.
所以数列的通项公式为.
(2)由
得,,
当或5时,取得最大值,最大值为10.
16.已知是数列的前项和,已知目,
(1)求数列的通项公式;
(2)设,求数列的前项和.
【答案】(1),.
(2),其中.
【详解】(1)由题,又由,.
可得,.
故.
则当,时,.
又时,,故数列的通项公式是,.
(2)由(1)可知,,
则.
则当为偶数时,
.
当为奇数时,.
综上:,其中.第17讲 数列的通项、求和及数列不等式的证明
真题展示
2022新高考一卷第17题
记为数列的前项和,已知,是公差为的等差数列.
(1)求的通项公式;
(2)证明:.
试题亮点
试题以考生熟悉的等差数列为载体而设计,但不是通常的给定等差数列求通项、求和等常规操作,而是将等差数列的性质融合在前n项和与通项的关系之中,特别是第(2)问中的数列的求和运算涉及裂项相消.试题源于教材、其创新思想又高于教材,充分体现高考的选拔功能.试题对高中数学教学具有指导作用,要求考生在强化基本功的同时,加强对知识的灵活运用,形成学科素养.
知识要点整理
数列求和问题
数列求和是数列问题中的基本题型,是数列部分的重点内容,在高考中也占据重要地位,它具有复杂多变、综合性强、解法灵活等特点.数列求和的方法主要有公式法、分组转化法、倒序相加法、错位相减法、裂项相消法、并项求和法等.
一、公式法求和
例1 求数列1,3+5,7+9+11,13+15+17+19,…的前n项和.
反思感悟 公式法求和中的常用公式有
(1)等差、等比数列的前n项和
①等差数列:Sn=na1+d(d为公差)或Sn=.
②等比数列:Sn=其中q为公比.
(2)四类特殊数列的前n项和
①1+2+3+…+n=n(n+1).
②1+3+5+…+(2n-1)=n2.
③12+22+32+…+n2=n(n+1)(2n+1).
④13+23+33+…+n3=n2(n+1)2.
二、分组转化法求和
例2 求和:Sn=2+2+…+2(x≠0).
反思感悟 某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列的和.
三、倒序相加法求和
例3 设F(x)=,求F+F+…+F.
反思感悟 (1)倒序相加法类比推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an).
(2)如果一个数列{an},首末两端等“距离”的两项的和相等,那么求其和可以用倒序相加法.
四、裂项相消法求和
例4 求和:+++…+,n≥2,n∈N*.
延伸探究
求和:+++…+,n≥2,n∈N*.
反思感悟 (1)对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”,分式的求和多利用此法,可用待定系数法对通项公式拆项,相消时应注意消去项的规律,即消去哪些项,保留哪些项.
(2)常见的拆项公式有
①=-.
②=.
③=.
④=-.
⑤=.
五、错位相减法求和
例5 已知{an}是等比数列,{bn}是等差数列,且a1=1,b1=3,a2+b2=7,a3+b3=11.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=,n∈N*,求数列{cn}的前n项和Tn.
反思感悟 一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便于下一步准确写出“Sn-qSn”的表达式.
六、并项求和法求和
例6 求和:Sn=-1+3-5+7-…+(-1)n(2n-1).
反思感悟 通项中含有(-1)n的数列求前n项和时可以考虑使用奇偶并项法,分项数为奇数和偶数分别进行求和.
三年真题
1.设是等差数列,是等比数列,且.
(1)求与的通项公式;
(2)设的前n项和为,求证:;
(3)求.
2.已知为等差数列,是公比为2的等比数列,且.
(1)证明:;
(2)求集合中元素个数.
3.已知等差数列的首项,公差.记的前n项和为.
(1)若,求;
(2)若对于每个,存在实数,使成等比数列,求d的取值范围.
4.已知函数.
(1)当时,讨论的单调性;
(2)当时,,求a的取值范围;
(3)设,证明:.
5.记为数列的前n项和.已知.
(1)证明:是等差数列;
(2)若成等比数列,求的最小值.
6.已知为有穷整数数列.给定正整数m,若对任意的,在Q中存在,使得,则称Q为连续可表数列.
(1)判断是否为连续可表数列?是否为连续可表数列?说明理由;
(2)若为连续可表数列,求证:k的最小值为4;
(3)若为连续可表数列,且,求证:.
7.记为数列的前n项和,已知是公差为的等差数列.
(1)求的通项公式;
(2)证明:.
8.已知是公差为2的等差数列,其前8项和为64.是公比大于0的等比数列,.
(I)求和的通项公式;
(II)记,
(i)证明是等比数列;
(ii)证明
9.记是公差不为0的等差数列的前n项和,若.
(1)求数列的通项公式;
(2)求使成立的n的最小值.
10.设p为实数.若无穷数列满足如下三个性质,则称为数列:
①,且;
②;
③,.
(1)如果数列的前4项为2,-2,-2,-1,那么是否可能为数列?说明理由;
(2)若数列是数列,求;
(3)设数列的前项和为.是否存在数列,使得恒成立?如果存在,求出所有的p;如果不存在,说明理由.
11.记为数列的前n项和,已知,且数列是等差数列,证明:是等差数列.
12.已知数列的前n项和为,,且.
(1)求数列的通项;
(2)设数列满足,记的前n项和为,若对任意恒成立,求实数的取值范围.
13.记为数列的前n项和,为数列的前n项积,已知.
(1)证明:数列是等差数列;
(2)求的通项公式.
14.已知数列的各项均为正数,记为的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.
①数列是等差数列:②数列是等差数列;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
15.设是首项为1的等比数列,数列满足.已知,,成等差数列.
(1)求和的通项公式;
(2)记和分别为和的前n项和.证明:.
16.已知数列满足,
(1)记,写出,,并求数列的通项公式;
(2)求的前20项和.
三年模拟
一、单选题
1.已知角的终边不在坐标轴上,则下列一定成等比数列的是( )
A. B.
C. D.
2.已知数列的前项和为,首项,且满足,则的值为( )
A.4093 B.4094 C.4095 D.4096
3.已知数列为等差数列,为等比数列的前n项和,且,,,,则( )
A. B. C. D.
二、填空题
4.设是由正整数组成且项数为的增数列,已知,,数列任意相邻两项的差的绝对值不超过1,若对于中任意序数不同的两项和,在剩下的项中总存在序数不同的两项和,使得,则的最小值为___________.
5.已知项数为m的有限数列是1,2,3,…,m的一个排列.若,且,则所有可能的m值之和为______.
6.数列满足,,则__________
7.已知等差数列中,,则的值等于__________.
8.已知公差为且各项均为正数的等差数列的前项和为,且,则的最小值为__________.
9.已知数列满足,且,表示数列的前n项和,则使不等式成立的正整数n的最小值是______.
三、解答题
10.已知数列的前项和为,且成等比数列.
(1)求数列 的通项公式;
(2)设数列 的前项和,求证:.
11.已知数列的首项,且满足.
(1)求证:数列为等比数列;
(2)若,求满足条件的最大整数.
12.近两年,直播带货逐渐成为一种新兴的营销模式,带来电商行业的新增长点.某直播平台第1年初的启动资金为500万元,由于一些知名主播加入,平台资金的年平均增长率可达,每年年底把除运营成本万元,再将剩余资金继续投入直播平合.
(1)若,在第3年年底扣除运营成本后,直播平台的资金有多少万元?
(2)每年的运营成本最多控制在多少万元,才能使得直播平台在第6年年底 除运营成本后资金达到3000万元?(结果精确到万元)
13.若函数是其定义域内的区间上的严格增函数,而是上的严格减函数,则称是上的“弱增函数”.若数列是严格增数列,而是严格减数列,则称是“弱增数列”.
(1)判断函数是否为上的“弱增函数”,并说明理由(其中是自然对数的底数);
(2)已知函数与函数的图像关于坐标原点对称,若是上的“弱增函数”,求的最大值;
(3)已知等差数列是首项为4的“弱增数列”,且公差d是偶数.记的前项和为,设是正整数,常数,若存在正整数和,使得且,求所有可能的值.
14.已知数列满足,记,在中每相邻两项之间都插入3个数,使它们和原数列的数一起构成一个新的正项等比数列,若数列中的第项是数列中的第项.
(1)求数列及的通项公式.
(2)求数列的前项和.
16.已知是数列的前项和,已知目,
(1)求数列的通项公式;
(2)设,求数列的前项和.