课件16张PPT。北师大版 九年级(下)2 二次函数的图象与性质(1)学习目标1、会用描点法画二次函数y=x2和y=
-x2的图象;2、根据函数y=x2和y=-x2的图象,直观地了解它的性质.你想直观地了解它的性质吗?数形结合,直观感受在二次函数y=x2中,y随x的变化而变化的规律是什么?观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表:你会用描点法画二次函数y=x2的图象吗?描点,连线y=x2观察图象,回答问题(1)你能描述图象的形状吗?与同伴进行交流.(2)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.(3)图象 与x轴有交点吗?如果有,交点坐标是什么?(4)当x<0时,随着x的值增大,y 的值如何变化?当x>0呢?(5)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?这条抛物线关于
y轴对称,y轴就
是它的对称轴. 对称轴与抛物
线的交点叫做
抛物线的顶点.二次函数y=x2的
图象形如物体抛射
时所经过的路线,我
们把它叫做抛物线.当x<0 (在对称轴的
左侧)时,y随着x的增大而
减小. 当x>0 (在对称轴的
右侧)时, y随着x的增大而
增大. 抛物线y=x2在x轴的
上方(除顶点外),顶点
是它的最低点,开口
向上,并且向上无限
伸展;当x=0时,函数y
的值最小,最小值是0.在学中做—在做中学(1)二次函数y=-x2的图象是什么形状?你能根据表格中的数据作出猜想吗?(2)先想一想,然后作出它的图象.(3)它与二次函数y=x2的图象有什么关系?xy0-4-3-2-11234-10-8-6-4-22-1描点,连线y=-x2函数y=ax2(a≠0)的图象和性质:y=x2y=-x2二次函数y=ax2的性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=x2y= -x2(0,0)(0,0)y轴y轴在x轴的上方(除顶点外)在x轴的下方( 除顶点外)向上向下当x=0时,最小值为0.当x=0时,最大值为0.在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小. 根据图形填表:y=x2和y=-x2是y=ax2当a=±1时2的特殊例子.a的符号确定着抛物线的……函数y=ax2(a≠0)的图象和性质:在同一坐标系中作出函数y=x2和y=-x2的图象1.抛物线y=ax2的顶点是原点,对称轴是y轴.2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;
当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.3.当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.
当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.二次函数y=ax2的性质我思,我进步1.已知抛物线y=ax2经过点A(-2,-8).
(1)求此抛物线的函数解析式;
(2)判断点B(-1,- 4)是否在此抛物线上.
(3)求出此抛物线上纵坐标为-6的点的坐标.解(1)把(-2,-8)代入y=ax2,得 -8=a(-2)2,
解得a= -2,所求函数解析式为y= -2x2.(2)因为 ,所以点B(-1 ,-4)
不在此抛物线上.(3)由-6=-2x2 ,得x2=3,
所以纵坐标为-6的点有两个,它们分别是
知道就做别客气2.填空:(1)抛物线y=2x2的顶点坐标是 ,对称轴是 ,在 侧,y随着x的增大而增大;在 侧,y随着x的增大而减小,当x= 时,函数y的值最小,最小值是 ,抛物线y=2x2在x轴的 方(除顶点外).(2)抛物线 在x轴的 方(除顶点外),在对称轴的
左侧,y随着x的 ;在对称轴的右侧,y随着x的
,当x=0时,函数y的值最大,最大值是 ,
当x 0时,y<0.(0,0)y轴对称轴的右对称轴的左00上下增大而增大增大而减小02.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;
当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.3.当a>0时,在对称轴的左侧,y随着x的增大而减小;
在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.
当a<0时,在对称轴的左侧,y随着x的增大而增大;
在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.1.抛物线y=ax2的顶点是原点,对称轴是y轴.由二次函数y=x2和y=-x2知:课件15张PPT。北师大版 九年级(下)2 二次函数的图象与性质(2)函数y=ax2(a≠0)的图象和性质在同一坐标系中作二次函数y=x2和y=2x2的图象. (1)完成下表: (2)分别作出y=x2和y=2x2的图象. 二次项系数a>0,开口都向上;对
称轴都是y轴;增减性与也相同. 顶点都是
原点(0,0).二次函数y=2x2的
图象形状与y=x2
一样,仍是抛物线.(3)二次函数y=2x2的图象是什么形状?它与二次函数y=x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么? 只是开口
大小不同.想一想,在同一坐标系中作二次函数y=-x2和y=-2x2的图象,会是什么样? 二次项系数a<0,开口都向下;对
称轴都是y轴;增减性与也相同. 顶点都是
原点(0,0).二次函数y=-2x2的
图象形状与y=-x2
一样,仍是抛物线.(4)二次函数y=-2x2的图象是什么形状?它与二次函数y=-x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么? 只是开口
大小不同.请你总结二次函数y=ax2的图象和性质.1.抛物线y=ax2的顶点是原点,对称轴是y轴.3.当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.二次函数y=ax2的性质2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.4. 越大,开口越小,
越小,开口越大.二次函数y=ax2的性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2 (a>0)y= ax2 (a<0)(0,0)(0,0)y轴y轴在x轴的上方(除顶点外)在x轴的下方( 除顶点外)向上向下当x=0时,最小值为0.当x=0时,最大值为0.在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小. 根据图形填表:我思,我进步在同一坐标系中作出二次函数y=2x2+1的图象与二次函数y=2x2的图象.二次函数y=2x2+1的图象与二次函数y=2x2的图象有什么关系?它们是轴对称图形吗?它的开口方向、对称轴和顶点坐标分别是什么?作图看一看. 二次项系数为2,开口向上;
开口大小相同;对称轴都是
y轴;增减性与也相同. 顶点不同,分别是
原点(0,0)和(0,1).二次函数y=2x2+1的
图象形状与y=2x2
一样,仍是抛物线.二次函数y=2x2+1的图象是什么形状?它与二次函数y=2x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么? 位置不同;
最小值不同:
分别是1和0.想一想,在同一坐标系中作二次函数y=-2x2+1和y=-2x2的图象,会是什么样? 二次项系数为-2,开口向下;
开口大小相同;对称轴都是
y轴;增减性与也相同. 顶点不同,分别是
原点(0,0)和(0,1).二次函数y=-2x2+1的
图象形状与y=-2x2
一样,仍是抛物线.二次函数y=-2x2+1的图象是什么形状?它与二次函数y=-2x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么? 位置不同;
最大值不同:
分别是1和0..想一想,二次函数y=ax2+c和y=ax2的图象和性质? 我思,我进步在同一坐标系中作出二次函数y=3x2-1的图象与二次函数y=3x2的图象.二次函数y=3x2一l的图象与二次函数y=3x2的图象有什么关系?它们是轴对称图形吗?它的开口方向、对称轴和顶点坐标分别是什么? 二次项系数为正数3,开口
向上;开口大小相同;对称
轴都是y轴;增减性与也相同. 顶点不同,分别是
原点(0,0)和(0,-1).二次函数y=3x2+1的
图象形状与y=3x2
一样,仍是抛物线.二次函数y=3x2-1的图象是什么形状?它与二次函数y=3x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么? 位置不同;
最大值不同:
分别是1和0.想一想,在同一坐标系中作二次函数y=-3x2-1和y=-3x2的图象,会是什么样? 二次项系数为正数-3,开口
向下;开口大小相同;对称
轴都是y轴;增减性与也相同. 顶点不同,分别是
原点(0,0)和(0,-1).二次函数y=3x2+1的
图象形状与y=3x2
一样,仍是抛物线.二次函数y=-3x2-1的图象是什么形状?它与二次函数y=-3x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么? 位置不同;
最大值不同:
分别是0和-1.请你总结二次函数y=ax2+c的图象和性质.二次函数y=ax2+c的图象和性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2 +c(a>0)y=ax2 +c(a<0)(0,c)(0,c)y轴y轴当c>0时,在x轴的上方(经过一,二象限);
当c<0时,与x轴相交(经过一,二三四象限).当c<0时,在x轴的下方(经过三,四象限);
当c>0时,与x轴相交(经过一,二三四象限).向上向下当x=0时,最小值为c.当x=0时,最大值为c.在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小. 根据图形填表:二次函数y=ax2+c与=ax2的关系1.相同点: (1)图像都是抛物线, 形状相同, 开口方向相同.
(2)都是轴对称图形, 对称轴都是y轴.
(3)都有最(大或小)值.
(4)a>0时, 开口向上,在y轴左侧,y都随x的增大而减小,在y轴右侧,y都随 x的增大而增大. a<0时,开口向下,在y轴左侧,y都随x的增大而增大,在y轴右侧,y都随 x的增大而减小 . 2.不同点:(1)顶点不同:分别是(0,c),(0,0).
(2)最值不同:分别是c和0.
3.联系: y=ax2+c(a≠0) 的图象可以看成y=ax2的图象沿y轴整体平移|c|个单位得到的.(当c>0时向上平移;当c<0时,向下平移).习题1.二次函数y=-3x2和y=3x2的图象有什么关系?它是轴对称图形吗? 它的开口方向、对称轴和顶点坐标分别是什么?先想一想,如果需要,作草图看一看.二次函数 和 呢?2.二次函数 和y=3x2 的图象有什么关系?它是轴对称图形吗? 它的开口方向、对称轴和顶点坐标分别是什么?先想一想,如果需要,作草图看一看.
二次函数 和 呢?课件24张PPT。北师大版 九年级(下)2 二次函数的图象与性质(3)比较函数 与 的图象(2)在同一坐标系中作出二次函数y=3x2和y=3(x-1)2的图象. ⑴完成下表,并比较3x2和3(x-1)2的值,它们之间有什么关系? 观察图象,回答问题(3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么? (4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x的增大而减少? 图象是轴对称图形
对称轴是平行于
y轴的直线:x=1.顶点坐标
是点(1,0).二次函数y=3(x-1)2
与y=3x2的图象形状
相同,可以看作是抛
物线y=3x2整体沿x轴
向右平移了1 个单位(3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么? 二次项系数相同
a>0,开口都向上.想一想,在同一坐标系中作二次函数y=3(x+1)2的图象,会在什么位置? 在对称轴(直线:x=1)左侧
(即x<1时),函数y=3(x-1)2
的值随x的增大而减少,.顶点是最低点,函数
有最小值.当x=1时,
最小值是0..二次函数y=3(x-1)2
与y=3x2的增减性类似.(4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x的增大而减少?在对称轴(直线:x=1)左侧
(即x>1时),函数y=3(x-1)2
的值随x的增大而增大,.想一想,在同一坐标系中作出二次函数y=3(x+1)2的图象,它的增减性会是什么样? 真知 从实践走来1.在上面的坐标系中作出二次函数y=3(x+1)2的图象.它与二次函数y=3x2和y=3(x-1)2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么? 2.x取哪些值时,函数y=3(x+1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x+1)2的值随x的增大而减少? 在同一坐标系中作出二次函数y=3x2,y=3(x-1)2和y=3(x+1)2的图象. 完成下表,并比较3x2,3(x-1)2和3(x+1)2的值,它们之间有什么关系? 函数y=a(x-h)2(a≠0)的图象和性质图象是轴对称图形.
对称轴是平行于
y轴的直线:x= -1.顶点坐标
是点(-1,0).二次函数y=3(x+1)2
与y=3x2的图象形状
相同,可以看作是抛
物线y=3x2整体沿x轴
向左平移了1 个单位.1.函数y=3(x+1)2的图象与y=3x2和y=3(x-1)2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么? 二次项系数相同
a>0,开口都向上.想一想,二次函数y=3(x+1)2的图象的增减性会怎样?在对称轴(直线:x=-1)左侧
(即x<-1时),函数y=3(x+1)2
的值随x的增大而减少,.顶点是最低点,函数
有最小值.当x=-1时,
最小值是0..二次函数y=3(x+1)2
与y=3x2的增减性类似.2.x取哪些值时,函数y=3(x+1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x+1)2的值随x的增大而减少?在对称轴(直线:x=-1)右侧
(即x>-1时),函数y=3(x+1)2
的值随x的增大而增大,.猜一猜,函数y=-3(x-1)2,y=-3(x+1)2和y=-3x2的图象的位置和形状.
请你总结二次函数y=a(x-h)2的图象和性质. 2.抛物线y=-3(x-1)2和y=-3(x+1)2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.3.抛物线y=-3(x-1)2在对称轴(x=1)的左侧,当x<1时, y随着x的增大而增大;在对称轴(x=1)右侧,当x>1时, y随着x的增大而减小.当x=1时,函数y的值最大(是0);
抛物线y=-3(x+1)2在对称轴(x=-1)的左侧,当x<-1时, y随着x的增大而增大;在对称轴(x=-1)右侧,当x>-1时, y随着x的增大而减小.当x=-1时,函数y的值最大(是0).二次函数y=-3(x-1)2,y=-3(x+1)2和y=-3x2的图象4.抛物线y=-3(x-1)2可以看作是抛物线y=-3x2沿x轴向右平移了1个单位;抛物线y=-3(x+1)2可以看作是抛物线y=-3x2沿x轴向左平移了1个单位.X=-1X=11.抛物线y=-3(x-1)2的顶点是(1,0);对称轴是直线:x=1;抛物线y=-3(x+1)2的顶点是(-1,0);对称轴是直线:x=-1.1.抛物线y=a(x-h)2的顶点是(h,0),对称轴是平行于y轴的直线x=h.3.当a>0时,在对称轴(x=h)的左侧,y随着x的增大而减小;在对称轴(x=h)右侧,y随着x的增大而增大;当x=h时函数y的值最小(是0).
当a<0时,在对称轴(x=h)的左侧,y随着x的增大而增大;在对称轴(x=h)的右侧,y随着x增大而减小;当x=h时,函数y的值最大(是0).二次函数y=a(x-h)2的性质2.当a>0时,抛物线y=a(x-h)2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;
当a<0时,抛物线y=a(x-h)2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.X=hX=h4. 越大,开口越小,
越小,开口越大.二次函数y=a(x-h)2
与y=ax2的图象形状
相同,可以看作是抛
物线y=ax2整体沿x轴
平移了 个单位(当h>0时,向右移 个单位;当h<0时,向左移 个单位)得到的.二次函数y=a(x-h)2的性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=a(x-h)2 (a>0)y=a(x-h)2 (a<0)(h,0)(h,0)直线x=h直线x=h在x轴的上方(除顶点外)在x轴的下方( 除顶点外)向上向下当x=h时,最小值为0.当x=h时,最大值为0.在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小. 根据图形填表:我思,我进步在同一坐标系中作出二次函数y=3x2,y=3(x-1)2和y=3(x-1)2+2的图象.二次函数y=3x2,y=3(x-1)2和y=3(x-1)2+2的图象有什么关系?它们的开口方向,对称轴和顶点坐标分别是什么?作图看一看. 在同一坐标系中作出函数y=3x2,y=3(x-1)2和y=3(x-1)2+2的图象.完成下表,并比较3x2,3(x-1)2和3(x-1)2+2值,它们之间有何关系? 函数y=a(x-h)2+k(a≠0)的图象和性质对称轴仍是平行于y轴的直
线(x=1);增减性与y=3x2类似. 顶点是(1,2).二次函数y=3(x-1)2+2的
图象可以看作是抛物线
y=3x2先沿着x轴向右平移
1个单位,再沿直线x=1向
上平移2个单位后得到的.二次函数y=3(x-1)2+2的图象和抛物线y=3x2,y=3(x-1)2有什么关系?它的开口方向,对称轴和顶点坐标分别是什么?开口向上,当
X=1时有最小
值:且最小值=2.先猜一猜,再做一做,在同一坐标系中作二次函数y=3(x-1)2-2,会是什么样?X=1对称轴仍是平行于y轴的直线
(x=1);增减性与y=3x2类似. 顶点是(1,-2).二次函数y=3(x-1)2-2的
图象可以看作是抛物线
y=3x2先沿着x轴向右平移
1个单位,再沿直线x=1向
下平移2个单位后得到的.二次函数y=3(x-1)2-2的图象与抛物线y=3x2和y=3(x-1)2有何关系?它的开口方向、对称轴和顶点坐标分别是什么? 开口向上,
当x=1时y有
最小值:且
最小值= -2.想一想,二次函数y=-3(x-1)2+2和y=-3x2,y=-3(x-1)2的图象有什么关系?它们的开口方向,对称轴和顶点坐标分别是什么?再作图看一看.X=1我思,我进步在同一坐标系中作出二次函数y=-3(x-1)2+2,y=-3(x-1)2-2,y=-3x2和y=-3(x-1)2的图象二次函数y=-3(x-1)2+2与y=-3(x-1)2-2和y=-3x2,y=-3(x-1)2的图象有什么关系?它们是轴对称图形吗?它的开口方向、对称轴和顶点坐标分别是什么?当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小? 对称轴仍是平行于y轴的直线
(x=1);增减性与y= -3x2类似. 顶点分别是
(1,2)和(1,-2).二次函数y=-3(x-1)2+2与
y=-3(x-1)2+2的图象可
以看作是抛物线y=-3x2
先沿着x轴向右平移1个
单位,再沿直线x=1向上
(或向下)平移2个单位后
得到的.二次函数y=-3(x-1)2+2与y=-3(x-1)2-2的图象和抛物线y=-3x2,y=-3(x-1)2有什么关系? 它的开口方向,对称轴和顶点坐标分别是什么?开口向下,
当x=1时y有
最大值:且
最大值= 2
(或最大值=-2).想一想,二次函数y=-3(x+1)2+2与y=-3(x+1)2-2的图象和抛物线y=-3x2,y=-3(x+1)2yX=1对称轴仍是平行于y轴的直线
(x=-1);增减性与y= -3x2类似. 顶点分别是
(-1,2)和(-1,-2).二次函数y=-3(x+1)2+2与
y=-3(x+1)2-2的图象可
以看作是抛物线y=-3x2
先沿着x轴向左平移1个
单位,再沿直线x=-1向上
(或向下)平移2个单位后
得到的.二次函数y=-3(x-1)2+2与y=-3(x-1)2-2的图象和抛物线y=-3x2,y=-3(x-1)2有什么关系? 它的开口方向,对称轴和顶点坐标分别是什么?开口向下,
当x=-1时y有
最大值:且
最大值= 2
(或最大值=-2).先想一想,再总结二次函数y=a(x-h)2+k的图象和性质. X=1二次函数y=a(x-h)2+k与=ax2的关系一般地,由y=ax2的图象便可得到二次函数y=a(x-h)2+k的图象:y=a(x-h)2+k(a≠0) 的图象可以看成y=ax2的图象先沿x轴整体左(右)平移|h|个单位(当h>0时,向右平移;当h<0时,向左平移),再沿对称轴整体上(下)平移|k|个单位 (当k>0时向上平移;当k<0时,向下平移)得到的.
因此,二次函数y=a(x-h)2+k的图象是一条抛物线,它的开口方向、对称轴和顶点坐标与a,h,k的值有关. 二次函数y=a(x+h)2+k的图象和性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=a(x-h)2+k(a>0)y=a(x-h)2+k(a<0)(-h,k)(-h,k)直线x=h直线x=h由h和k的符号确定由h和k的符号确定向上向下当x=h时,最小值为k.当x=h时,最大值为k.在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小. 根据图形填表:悟出真谛,练出本事1.指出下列函数图象的开口方向对称轴和顶点坐标:2.(1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?
对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢? 1.相同点: (1)形状相同(图像都是抛物线,开口方向相同).
(2)都是轴对称图形.
(3)都有最(大或小)值.
(4)a>0时, 开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随 x的增大而增大. a<0时,开口向下,在对称轴左侧,y都随x的增大而增大,在对称轴右侧,y都随 x的增大而减小 . 2.不同点: 只是位置不同(1)顶点不同:分别是(-h,k)和(0,0).
(2)对称轴不同:分别是直线x= -h和y轴.
(2)最值不同:分别是k和0.
3.联系: y=a(x-h)2+k(a≠0) 的图象可以看成y=ax2的图象先沿x轴整体左(右)平移|h|个单位(当h>0时,向右平移;当h<0时,向左平移),再沿对称轴整体上(下)平移|k|个单位 (当k>0时向上平移;当k<0时,向下平移)得到的.二次函数y=a(x-h)2+k与=ax2的关系习题1.指出下列函数图象的开口方向,对称轴和顶点坐标.必要时作出草图进行验证.2.填写下表:课件15张PPT。北师大版 九年级(下)2 二次函数的图象与性质(4)你能用配方的方法把y=3x2-6x+5变形成y=3(x-1)2+2的形式吗?函数y=ax2+bx+c的图象 二次函数y=3x2-6x+5的图象是什么形状?它与我们已经作过的二次函数的图象有什么关系? 由于y=3x2-6x+5=3(x-1)2+2,因此我们可以作二次函数3(x-1)2+2的图象. 怎样直接作出函数y=3x2-6x+5的图象?函数y=ax2+bx+c的图象 我们知道,作出二次函数y=3x2的图象,通过平移抛物线y=3x2可以得到二次函数3(x-1)2+2的图象. 1.配方:提取二次项系数配方:加上再减去一次项系数绝对值一半的平方整理:前三项化为平方形式,后两项合并同类项化简:去掉中括号老师提示:
配方后的表达式通常称为配方式或顶点式直接画函数y=ax2+bx+c的图象4.画对称轴,描点,连线:作出二次函数y=3(x-1)2+2的图象. 2.根据配方式(顶点式)确定开口方向,对称轴,顶点坐标.3.列表:根据对称性,选取适当值列表计算.∵a=3>0,∴开口向上;对称轴:直线x=1;顶点坐标:(1,2).学了就用,别客气作出函数y=2x2-12x+13的图象. ●(1,2)●(3,-5)例.求次函数y=ax2+bx+c的对称轴和顶点坐标. 函数y=ax2+bx+c的顶点式 一般地,对于二次函数y=ax2+bx+c,我们可以利用配方法推导出它的对称轴和顶点坐标. 1.配方:提取二次项系数配方:加上再减去一次项系数绝对值一半的平方整理:前三项化为平方形式,后两项合并同类项化简:去掉中括号老师提示:
这个结果通常称为求顶点坐标公式.顶点坐标公式因此,二次函数y=ax2+bx+c的图象是一条抛物线.根据公式确定下列二次函数图象的对称轴和顶点坐标: 如图,两条钢缆具有相同的抛物线形状.按照图中的直角坐标系,左面的一条抛物线可以用y=0.0225x2+0.9x+10表示,而且左右两条抛物线关手y轴对称. ⑴钢缆的最低点到桥面的距离是少?
⑵两条钢缆最低点之间的距离是多少?
⑶你是怎样计算的?与同伴交流.函数y=ax2+bx+c(a≠0)的应用⑴.钢缆的最低点到桥面的距离是少?你是怎样计算的?与同伴交流.可以将函数y=0.0225x2+0.9x+10配方,求得顶点坐标,从而获得钢缆的最低点到桥面的距离;⑵两条钢缆最低点之间的距离是多少?你是怎样计算的?与同伴交流.想一想,你知道图中右面钢缆的表达式是什么吗? ⑶你还有其他方法吗?与同伴交流.直接利用顶点坐标公式再计算一下上面问题中钢缆的最低点到桥面的距离以及两条钢缆最低点之间的距离. 请你总结函数
函数y=ax2+bx+c(a≠0)
的图象和性质 想一想,函数y=ax2+bx+c和y=ax2的图象之间的关系是什么?二次函数y=ax2+bx+c(a≠0)的图象和性质抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)由a,b和c的符号确定由a,b和c的符号确定向上向下在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小. 根据图形填表:1.相同点: (1)形状相同(图像都是抛物线,开口方向相同).
(2)都是轴对称图形.
(3)都有最(大或小)值.
(4)a>0时, 开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随 x的增大而增大. a<0时,开口向下,在对称轴左侧,y都随x的增大而增大,在对称轴右侧,y都随 x的增大而减小 . 2.不同点: (1)位置不同(2)顶点不同:分别是 和(0,0).
(3)对称轴不同:分别是 和y轴.
(4)最值不同:分别是 和0.
3.联系: y=a(x-h)2+k(a≠0) 的图象可以看成y=ax2的图象先沿x轴整体左(右)平移| |个单位(当 >0时,向右平移;当 <0时,向左平移),再沿对称轴整体上(下)平移| |个单位 (当 >0时向上平移;当 <0时,向下平移)得到的.二次函数y=ax2+bx+c(a≠0)与=ax2的关系习题1.确定下列二次函数的开口方向、对称轴和顶点坐标.2.当一枚火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用公式表示,经过多长时间,火箭到达它的最高点?最高点的高度是多少?
3.你知道图2—7中右面钢缆的表达式是什么吗?.