2019年高三二轮复习数学浙江专版 专题一 第二讲 小题考法——三角函数的图象与性质

文档属性

名称 2019年高三二轮复习数学浙江专版 专题一 第二讲 小题考法——三角函数的图象与性质
格式 zip
文件大小 1.7MB
资源类型 教案
版本资源
科目 数学
更新时间 2019-04-27 10:05:51

文档简介

第二讲 小题考法——三角函数的图象与性质
考点(一)
三角函数的图象及应用
主要考查三角函数的图象变换或根据图象求解析式?或参数?.
[典例感悟]
[典例] (1)要想得到函数y=sin 2x+1的图象,只需将函数y=cos 2x的图象(  )
A.向左平移个单位长度,再向上平移1个单位长度
B.向右平移个单位长度,再向上平移1个单位长度
C.向左平移个单位长度,再向下平移1个单位长度
D.向右平移个单位长度,再向下平移1个单位长度
(2)已知函数g(x)=sin2x-cos2x,如图是函数f(x)=Asin(ωx+φ)的部分图象,为了得到f(x)的图象,只需将g(x)的图象(  )
A.向左平移个单位长度
B.向左平移个单位长度
C.向右平移个单位长度
D.向右平移个单位长度
(3)将函数f(x)=2sincoscos φ+sin φ的图象向左平移个单位长度后得到函数g(x)的图象,且函数g(x)的图象关于y轴对称,则g的值为(  )
A.          B.-
C. D.-
[解析] (1)先将函数y=cos 2x=sin的图象向右平移个单位长度,得到y=sin 2x的图象,再向上平移1个单位长度,即得y=sin 2x+1的图象,故选B.
(2)设函数f(x)的最小正周期为T,由图象知A=1,T=×=π=,所以ω=2.因为f=1,所以2×+φ=+2kπ,k∈Z,又|φ|<,所以φ=,f(x)=sin.将g(x)=sin2x-cos2x=-cos 2x=sin的图象向左平移个单位长度后得到的图象对应的解析式为y=sin=sin.故选B.
(3)将函数f(x)=2sincoscos φ+·sin φ=sin xcos φ+cos xsin φ=sin(x+φ)的图象向左平移个单位长度后,所得图象对应的函数解析式为g(x)=sin.由g(x)=sin的图象关于y轴对称,可得g(x)为偶函数,故φ+=kπ+,k∈Z,即φ=kπ+,k∈Z.又|φ|<,故φ=,可得函数g(x)=sin,g=sin=.
[答案] (1)B (2)B (3)A
[方法技巧]
1.函数表达式y=Asin(ωx+φ)+B的确定方法
字母
确定途径
说明
A
由最值确定
A=
B
由最值确定
B=
ω
由函数的
周期确定
相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点之差的绝对值为个周期,ω=
φ
由图象上的
特殊点确定
一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置,利用待定系数法并结合图象列方程或方程组求解
2.三角函数图象平移问题处理的“三看”策略
[演练冲关]
1.(2017·全国卷Ⅰ)已知曲线C1:y=cos x,C2:y=sin,则下面结论正确的是(  )
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
解析:选D 易知C1:y=cos x=sin,把曲线C1上的各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin的图象,再把所得函数的图象向左平移个单位长度,可得函数y=sin=sin的图象,即曲线C2.
2.(2019届高三·金华十校联考)已知函数f(x)=sin(x∈R,ω>0)与g(x)=cos(2x+φ)的对称轴完全相同.为了得到h(x)=cos的图象,只需将y=f(x)的图象(  )
A.向左平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
解析:选A 函数f(x)=sin与g(x)=cos(2x+φ)的对称轴完全相同,
则ω=2,且f(x)=sin,
又h(x)=cos=sin=sin,
把f(x)=sin的图象向左平移个单位长度,
可得y=sin=sin=h(x)的图象.
3.(2019届高三·镇海区校级模拟)函数f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<0)的部分图象如图所示,则φ=________,为了得到g(x)=Acos ωx的图象,需将函数y=f(x)的图象最少向左平移________个单位长度.
解析:由图象可得A=2,
∵=-=,
∴T=π,ω=2,f(x)=2sin(2x+φ),
将代入得sin=1,
∵-π<φ<0,∴φ=-,f(x)=2sin.
∵f=2sin=2cos 2x=g(x),
∴可将函数y=f(x)的图象向左平移个单位长度得到g(x)的图象,
故答案为-,.
答案:- 
4.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG(点G是图象的最高点)是边长为2的等边三角形,则f(1)=________.
解析:由题意得,A=,T=4=,ω=.
又∵f(x)=Acos(ωx+φ)为奇函数,
∴φ=+kπ,k∈Z,∵0<φ<π,则φ=,
∴f(x)=cos,∴f(1)=-.
答案:-
考点(二)
三角函数的性质及应用
主要考查三角函数的奇偶性及对称性、周期性或求函数的单调区间,以及根据函数的单调性、奇偶性、周期性等求参数或取值范围.
[典例感悟]
[典例] (1)函数f(x)=sin,x∈[-1,1],则(  )
A.f(x)为偶函数,且在[0,1]上单调递减
B.f(x)为偶函数,且在[0,1]上单调递增
C.f(x)为奇函数,且在[-1,0]上单调递增
D.f(x)为奇函数,且在[-1,0]上单调递减
(2)已知函数f(x)=sin xcos 2x,则下列关于函数f(x)的结论中,错误的是(  )
A.最大值为1
B.图象关于直线x=-对称
C.既是奇函数又是周期函数
D.图象关于点中心对称
(3)已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在上单调,则ω的最大值为(  )
A.11          B.9
C.7 D.5
[解析] (1)∵函数f(x)=sin=cos πx,故函数f(x)为偶函数,故排除C、D.当x∈[0,1]时,πx∈[0,π],函数y=cos πx是减函数,故排除B,选A.
(2)∵函数f(x)=sin xcos 2x,当x=时,f(x)取得最大值为1,故A正确;当x=-时,函数f(x)=1,为函数的最大值,故图象关于直线x=-对称;故B正确;函数f(x)满足f(-x)=sin(-x)cos(-2x)=-sin xcos 2x=-f(x),故函数f(x)为奇函数,再根据f(x+2π)=sin(x+2π)cos[2(x+2π)]=sin xcos 2x,故f(x)的周期为2π,故C正确;由于f+f(x)=-cos x·cos(3π-2x)+sin xcos 2x=cos xcos 2x+sin xcos 2x=cos 2x(sin x+cos x)=0不一定成立,故f(x)图象不一定关于点中心对称,故D不正确,故选D.
(3)由题意得
且|φ|≤,
则ω=2k+1,k∈Z,φ=或φ=-.
对比选项,将选项各值依次代入验证:
若ω=11,则φ=-,此时f(x)=sin,f(x)在区间上单调递增,在区间上单调递减,不满足f(x)在区间上单调;
若ω=9,则φ=,此时f(x)=sin,满足f(x)在区间上单调递减,故选B.
[答案] (1)A (2)D (3)B
[方法技巧]
1.求函数单调区间的方法
(1)代换法:求形如y=Asin(ωx+φ)(或y=Acos(ωx+φ))(A,ω,φ为常数,A≠0,ω>0)的单调区间时,令ωx+φ=z,得y=Asin z(或y=Acos z),然后由复合函数的单调性求得.
(2)图象法:画出三角函数的图象,结合图象求其单调区间.
2.判断对称中心与对称轴的方法
利用函数y=Asin(ωx+φ)的对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点这一性质,通过检验f(x0)的值进行判断.
3.求三角函数周期的常用结论
(1)y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为,y=tan的最小正周期为.
(2)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是个周期,相邻的对称中心与对称轴之间的距离是个周期;正切曲线相邻两对称中心之间的距离是个周期.
[演练冲关]
1.(2018·浙江十校联考)下列四个函数中,以π为最小正周期,在上单调递减且为偶函数的是(  )
A.y=sin|x| B.y=cos|x|
C.y=|tan x| D.y=-ln|sin x|
解析:选D 由题意知函数y=sin|x|在上单调递增,y=cos|x|的最小正周期为2π,y=|tan x|在上单调递增,故排除A、B、C.因为f(x)=|sin x|为偶函数,且当x∈时单调递增,所以y=-ln|sin x|为偶函数,且当x∈时单调递减,又g(x)=sin x的最小正周期为2π,所以f(x)=|sin x|的最小正周期为π,则函数y=-ln|sin x|的最小正周期为π.故选D.
2.已知函数f(x)=sin+,ω>0,x∈R,且f(α)=-,f(β)=.若|α-β|的最小值为,则函数f(x)的单调递增区间为________.
解析:由f(α)=-,f(β)=,|α-β|的最小值为,知=,即T=3π=,所以ω=,所以f(x)=sin+.由-+2kπ≤x-≤+2kπ,k∈Z,得-+3kπ≤x≤π+3kπ,k∈Z,即函数f(x)的单调递增区间为,k∈Z.
答案:,k∈Z
3.已知函数f(x)=2sin(ωx+φ)图象的相邻两条对称轴之间的距离为π,则ω=________,若f(x)>1对任意的x∈恒成立,则φ的取值范围是________.
解析:∵函数f(x)=2sin(ωx+φ)图象的相邻两条对称轴之间的距离为π,∴=2π,ω=1,f(x)=2sin(x+φ).
∵当x∈,即x+φ∈时,f(x)>1恒成立,
∴当x+φ∈时,sin(x+φ)>恒成立,又|φ|≤,∴-+φ≥,且+φ≤,解得≤φ≤.
答案:1 
考点(三)
三角函数的值域与最值问题
主要考查求三角函数的值域或最值,以及根据函数的值域或最值求参数.
[典例感悟]
[典例] (1)函数f(x)=cos 2x+6cos的最大值为(  )
A.4           B.5
C.6 D.7
(2)函数f(x)=sin在上的值域为________.
(3)(2018·郑州模拟)已知函数f(x)=sin,其中x∈,若f(x)的值域是,则实数a的取值范围是________.
[解析] (1)∵f(x)=cos 2x+6cos=cos 2x+6sin x=1-2sin2x+6sin x=-22+,
又sin x∈[-1,1],∴当sin x=1时,f(x)取得最大值5.
(2)∵x∈,∴2x+∈,
∴当2x+=,即x=时,f(x)max=1.
当2x+=,即x=时,f(x)min=-,
∴f(x)∈.
(3)由x∈,知x+∈.
∵x+∈时,f(x)的值域为,
∴由函数的图象知≤a+≤,∴≤a≤π.
[答案] (1)B (2) (3)
[方法技巧]
求三角函数的值域(最值)的常见类型及方法
三角函数类型
求值域(最值)方法
y=asin x+bcos x+c
先化为y=Asin(ωx+φ)+k的形式,再求值域(最值)
y=asin2x+bsin x+c
可先设sin x=t,化为关于t的二次函数,再求值域(最值)
y=asin xcos x+
b(sin x±cos x)+c
可先设t=sin x±cos x,化为关于t的二次函数,再求值域(最值)
y=
一般可看成过定点的直线与圆上动点连线的斜率问题,利用数形结合求解
[演练冲关]
1.已知函数y=2cos x的定义域为,值域为[a,b],则b-a的值是(  )
A.2 B.3
C.+2 D.2-
解析:选B 因为x∈,所以cos x∈,故y=2cos x的值域为[-2,1],所以b-a=3.
2.当x∈时,函数y=3-sin x-2cos2x的最小值是________,最大值是________.
解析:y=3-sin x-2cos2x=3-sin x-2(1-sin2x)=22+.
∵x∈,∴sin x∈.
∴当sin x=时,ymin=,
当sin x=-或sin x=1时,ymax=2.
答案: 2
3.(2018·南宁模拟)已知函数f(x)=cos,其中x∈,若f(x)的值域是,则m的取值范围是________.
解析:由x∈,可知≤3x+≤3m+,∵f=cos=-,且f=cos π=-1,∴要使f(x)的值域是,需要π≤3m+≤,即≤m≤.
答案:

(一) 主干知识要记牢
1.三角函数的图象及常用性质
函数
y=sin x
y=cos x
y=tan x
图象
单调性
在(k∈Z)上单调递增;在(k∈Z)上单调递减
在[-π+2kπ,2kπ](k∈Z)上单调递增;在[2kπ,π+2kπ](k∈Z)上单调递减
在(k∈Z)上单调递增
对称性
对称中心:(kπ,0)(k∈Z);对称轴:x=+kπ(k∈Z)
对称中心:(k∈Z);对称轴:x=kπ(k∈Z)
对称中心:(k∈Z)
2.三角函数的两种常见的图象变换
(二) 二级结论要用好
1.sin α-cos α>0?α的终边在直线y=x上方(特殊地,当α在第二象限时有 sin α-cos α>1).
2.sin α+cos α>0?α的终边在直线y=-x上方(特殊地,当α在第一象限时有sin α+cos α>1).
(三) 易错易混要明了
求y=Asin(ωx+φ)的单调区间时,要注意ω,A的符号.ω<0时,应先利用诱导公式将x的系数转化为正数后再求解;在书写单调区间时,弧度和角度不能混用,需加2kπ时,不要忘掉k∈Z,所求区间一般为闭区间.
如求函数f(x)=2sin的单调减区间,应将函数化为f(x)=-2sin,转化为求函数y=sin的单调增区间.

A组——10+7提速练
一、选择题
1.函数f(x)=tan的单调递增区间是(  )
A.(k∈Z)
B.(k∈Z)
C.(k∈Z)
D.(k∈Z)
解析:选B 由kπ-<2x-2.为了得到函数y=3sin 2x+1的图象,只需将y=3sin x的图象上的所有点(  )
A.横坐标伸长2倍,再向上平移1个单位长度
B.横坐标缩短倍,再向上平移1个单位长度
C.横坐标伸长2倍,再向下平移1个单位长度
D.横坐标缩短倍,再向下平移1个单位长度
解析:选B 将y=3sin x的图象上的所有点的横坐标缩短倍得到y=3sin 2x的图象,再将y=3sin 2x的图象再向上平移1个单位长度即得y=3sin 2x+1的图象,故选B.
3.函数f(x)=sin(ωx+φ)的部分图象如图所示,则函数f(x)的解析式为(  )
A.f(x)=sin    B.f(x)=sin
C.f(x)=sin D.f(x)=sin
解析:选A 由题图可知, 函数f(x)的最小正周期为T==×4=π,所以ω=2,即f(x)=sin(2x+φ).又函数f(x)的图象经过点,所以sin=1,则+φ=2kπ+(k∈Z),解得φ=2kπ+(k∈Z),又|φ|<,所以φ=,即函数f(x)=sin,故选A.
4.(2018·宁波模拟)将函数y=sin的图象向左平移个单位长度,所得函数图象的一条对称轴方程是(  )
A.x= B.x=-
C.x= D.x=
解析:选A 将函数y=sin的图象向左平移个单位长度,可得y=sin=sin的图象,令2x+=kπ+,求得x=+,k∈Z,可得所得函数图象的对称轴方程为x=+,k∈Z,令k=1,可得所得函数图象的一条对称轴方程为x=,故选A.
5.已知函数f(x)=4cos(ωx+φ)(ω>0,0<φ<π)为奇函数,A(a,0),B(b,0)是其图象上两点,若|a-b|的最小值是1,则f=(  )
A.2 B.-2
C. D.-
解析:选B ∵函数f(x)=4cos(ωx+φ)(ω>0,0<φ<π)为奇函数,∴φ=,f(x)=-4sin ωx.∵A(a,0),B(b,0)是其图象上两点,|a-b|的最小值是1,∴×=1,∴ω=π,f(x)=-4sin πx,则f=-4sin=-2.
6.(2017·天津高考)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f=2,f=0,且f(x)的最小正周期大于2π,则(  )
A.ω=,φ= B.ω=,φ=-
C.ω=,φ=- D.ω=,φ=
解析:选A 法一:由f=2,
得ω+φ=+2kπ(k∈Z),①
由f=0,得ω+φ=k′π(k′∈Z),②
由①②得ω=-+(k′-2k).
又最小正周期T=>2π,所以0<ω<1,ω=.
又|φ|<π,将ω=代入①得φ=.选项A符合.
法二:∵f=2,f=0,且f(x)的最小正周期大于2π,
∴-=(2m+1),m∈N,
∴T=,m∈N,
∵f(x)的最小正周期大于2π,∴T=3π,
∴ω==,∴f(x)=2sin.
由2sin=2,得φ=2kπ+,k∈Z.
又|φ|<π,∴取k=0,得φ=.故选A.
7.若把函数y=2cos x(cos x-sin x)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是(  )
A. B.
C. D.
解析:选A 法一:y=2cos x(cosx-sin x)=2cos2x-2sin xcos x=1+cos 2x-sin 2x=1+2sin,该函数的图象向左平移m个单位长度后,所得图象对应的函数为y=1+2sin=1+2sin,由题意知2m+=+kπ,k∈Z,解得m=-,k∈Z,取k=1,得到m的最小值为,故选A.
法二:y=2cos x(cos x-sin x)=2cos2x-2sin xcos x=1+cos 2x-sin 2x=1+2sin,令2x+=kπ+,k∈Z,则x=-,k∈Z,则原函数的图象在x轴右侧且离y轴最近的一条对称轴为直线x=.因为原函数的图象向左平移m(m>0)个单位长度后得到的图象关于y轴对称,所以m的最小值为,故选A.
8.(2019届高三·温州期中)设α是三角形的一个内角,在sin α,sin,cos α,cos 2α,tan 2α,tan中可能为负数的值的个数是(  )
A.2 B.3
C.4 D.5
解析:选A ∵α是三角形的一个内角,
若0<α<,则0<<,0<2α<π.
∴在sin α,sin,cos α,cos 2α,tan 2α,tan中可能为负数的是cos 2α与tan 2α;
若α=,则=,2α=π.
∴在sin α,sin,cos α,cos 2α,tan 2α,tan中为负数的是cos 2α;
若<α≤,则<≤,π<2α≤.
∴在sin α,sin,cos α,cos 2α,tan 2α,tan中可能为负数的是cos α与cos 2α;
若<α<π,则<<,<2α<2π.
∴在sin α,sin,cos α,cos 2α,tan 2α,tan中可能为负数的是cos α与tan 2α.
∴在sin α,sin,cos α,cos 2α,tan 2α,tan中可能为负数的值的个数是2个.故选A.
9.已知x=是函数f(x)=sin(2x+φ)+cos(2x+φ)(0<φ<π)图象的一条对称轴,将函数f(x)的图象向右平移个单位长度后得到函数g(x)的图象,则函数g(x)在上的最小值为(  )
A.-2 B.-1
C.- D.-
解析:选B f(x)=sin(2x+φ)+cos(2x+φ)=2sin.∵x=是f(x)=2sin图象的一条对称轴,∴2×++φ=kπ+(k∈Z),即φ=+kπ(k∈Z),∵0<φ<π,∴φ=,则f(x)=2sin,∴g(x)=2sin=-2sin,则g(x)在上的最小值为g=-1,故选B.
10.(2019届高三·浙江六校联考)已知函数f(x)=3sin(ωx+θ)的图象的相邻两条对称轴之间的距离为,将函数f(x)=3sin(ωx+θ)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P,则φ的一个可能值是(  )
A. B.
C. D.
解析:选D 由函数f(x)=3sin(ωx+θ)的图象的相邻两条对称轴之间的距离为,得函数f(x)的最小正周期为π,则π=,所以ω=2,函数f(x)=3sin(2x+θ)的图象向右平移φ个单位长度,得到g(x)=3sin(2x+θ-2φ)的图象,因为f(x),g(x)的图象都经过点P,所以sin θ=,sin(θ-2φ)=,又-<θ<,所以θ=,所以sin=,所以-2φ=2kπ+(k∈Z)或-2φ=2kπ+(k∈Z),所以φ=-kπ(k∈Z)或φ=-kπ-(k∈Z),因为φ>0,所以结合选项知φ的一个可能值是.故选D.
二、填空题
11.已知函数f(x)=2sin(ωx+φ)对任意的x都有f=f,则f=________.
解析:函数f(x)=2sin(ωx+φ)对任意的x都有f=f,则其图象的一条对称轴为x=,所以f=±2.
答案:±2
12.已知f(x)=sin(ωx+φ)(ω>0,|φ|<π)在区间[2,4]上单调,且f(2)=1,f(4)=-1,则ω=________,f(x)在区间上的值域是________.
解析:由题意知f(x)的最小正周期T=4,∴ω=,
∴f(x)=sin.又f(2)=sin(π+φ)=1,
∴π+φ=+2kπ,k∈Z.
又|φ|<π,∴φ=-,∴f(x)=sin.
由x∈,得x-∈,
∴sin∈,
即f(x)在区间上的值域为.
答案: 
13.(2018·金华模拟)已知函数f(x)=4sin xsin,则函数f(x)的最小正周期T=________,在区间上的值域为________.
解析:函数f(x)=4sin xsin =4sin x=2sin2x+2sin xcos x=sin 2x-cos 2x+1=2sin+1,
函数f(x)的最小正周期T==π.
∵x∈,∴2x-∈.
∴-∴0∴值域为(0,3].
答案:π (0,3]
14.设P为函数f(x)=sinx的图象上的一个最高点,Q为函数g(x)=cosx的图象上的一个最低点,则|PQ|的最小值是________.
解析:由题意知两个函数的周期都为T==4,由正、余弦函数的图象知,f(x)与g(x)的图象相差个周期,设P,Q分别为函数f(x),g(x)图象上的相邻的最高点和最低点,设P(x0,1),则Q(x0+1,-1),则|PQ|min==.
答案:
15.已知函数f(x)=cos xsin x(x∈R),则下列四个结论中正确的是________.(填序号)
①若f(x1)=-f(x2),则x1=-x2;
②f(x)的最小正周期是2π;
③f(x)在区间上是增函数;
④f(x)的图象关于直线x=对称.
解析:因为f(x)=cos xsin x=sin 2x,所以f(x)是周期函数,且最小正周期为T==π,所以①②错误;由2kπ-≤2x≤2kπ+(k∈Z),解得kπ-≤x≤kπ+(k∈Z),当k=0时,-≤x≤,此时f(x)是增函数,所以③正确;由2x=+kπ(k∈Z),得x=+(k∈Z),取k=1,则x=,故④正确.
答案:③④
16.(2018·全国卷Ⅰ)已知函数f(x)=2sin x+sin 2x,则f(x)的最小值是________.
解析:f′(x)=2cos x+2cos 2x=2cos x+2(2cos2x-1)
=2(2cos2x+cos x-1)=2(2cos x-1)(cos x+1).
∵cos x+1≥0,
∴当cos x<时,f′(x)<0,f(x)单调递减;
当cos x>时,f′(x)>0,f(x)单调递增.
∴当cos x=,f(x)有最小值.
又f(x)=2sin x+sin 2x=2sin x(1+cos x),
∴当sin x=-时,f(x)有最小值,
即f(x)min=2××=-.
答案:-
17.已知函数f(x)=Acos2(ωx+φ)+1的最大值为3,f(x)的图象与y轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+…+f(2 017)+f(2 018)=________.
解析:∵函数f(x)=Acos2(ωx+φ)+1=A·+1=cos(2ωx+2φ)+1+的最大值为3,∴+1+=3,∴A=2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即=4,∴ω=.再根据f(x)的图象与y轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<,∴2φ=,φ=.故函数f(x)的解析式为f(x)=cos+2=-sinx+2,∴f(1)+f(2)+…+f(2 017)+f(2 018)=-+2×2 018=504×0-sin-sin π+4 036=0-1-0+4 036=4 035.
答案:4 035
B组——能力小题保分练
1.曲线y=2coscos和直线y=在y轴右侧的交点的横坐标按从小到大的顺序依次记为P1,P2,P3,…,则|P3P7|=(  )
A.π B.2π
C.4π D.6π
解析:选B y=2coscos=cos2x-sin2x=cos 2x,故曲线对应的函数为周期函数,且最小正周期为π,直线y=在y轴右侧与函数y=2cos·cos在每个周期内的图象都有两个交点,又P3与P7相隔2个周期,故|P3P7|=2π,故选B.
2.已知函数f(x)=Asin(ωx+φ)的部分图象如图所示,则(  )
A.f(x)的图象关于直线x=-对称
B.f(x)的图象关于点对称
C.若方程f(x)=m在上有两个不相等的实数根,则实数m的取值范围是(-2,- ]
D.将函数y=2sin的图象向左平移个单位长度得到函数f(x)的图象
解析:选C 由题图可知,A=2,T=4×=π,∴ω==2.又f=2,
∴2sin=2,+φ=+2kπ,k∈Z,
∵|φ|<,∴φ=,
∴函数f(x)的解析式为f(x)=2sin,
∴当x=-时,2×+=-π,
f=2sin(-π)=0,
从而f(x)的图象关于点对称,而不是关于直线x=-对称,故A不正确;
当x=-时,2×+=-,
∴f(x)的图象关于直线x=-对称,而不是关于点对称,故B不正确;
当x∈时,2x+∈,f(x)∈[-2,  ],结合正弦函数图象的性质,可知若方程f(x)=m在上有两个不相等的实数根,则实数m的取值范围是(-2,- ],故C正确;
根据图象平移变换的法则,可知应将y=2sin的图象向左平移个单位长度得到f(x)的图象,故D不正确.故选C.
3.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数:
①f(x)=sin x+cos x;②f(x)=(sin x+cos x);
③f(x)=sin x;④f(x)=sin x+.
其中互为生成函数的是(  )
A.①② B.①④
C.③④ D.②④
解析:选B 首先化简题中①②两个函数解析式可得:①f(x)=sin,②f(x)=2sin,可知③f(x)=sin x的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f(x)=sin x不与其他函数互为生成函数;同理①f(x)=sin(④f(x)=sin x+)的图象与②f(x)=2sin的图象也必须经过伸缩变换才能重合,而④f(x)=sin x+的图象向左平移个单位长度,再向下平移个单位长度即可得到①f(x)=sin的图象,∴①④互为生成函数,故选B.
4.已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正常数)的最小正周期为π,且当x=时,函数f(x)取得最小值,则(  )
A.f(1)C.f(-1)解析:选C 因为函数f(x)=Asin(ωx+φ)的最小正周期为π,所以ω==2,故f(x)=Asin(2x+φ),因为当x=时,函数f(x)取得最小值,所以2×+φ=2kπ-,k∈Z,解得φ=2kπ-,k∈Z,又φ>0,故可取k=1,则φ=,故f(x)=Asin,所以f(-1)=Asin<0,f(1)=Asin>0,f(0)=Asin=A>0,故f(-1)最小.又sin=sin=sin>sin,故f(1)>f(0).综上可得f(-1)5.若函数f(x)=2sin(ω>0)的图象的对称轴与函数g(x)=cos(2x+φ)的图象的对称轴完全相同,则函数f(x)的图象的对称轴为________,φ=________.
解析:因为函数f(x)=2sin(ω>0)的图象的对称轴与函数g(x)=cos(2x+φ)的图象的对称轴完全相同,故它们的最小正周期相同,即=,所以ω=2,故函数f(x)=2sin.令2x+=kπ+,k∈Z,则x=+,k∈Z,故函数f(x)的图象的对称轴为x=+,k∈Z.令2x+φ=mπ,m∈Z,则x=-,m∈Z,故函数g(x)的图象的对称轴为x=-,m∈Z,故+-+=,m,n,k∈Z,即φ=(m+n-k)π-,m,n,k∈Z,又|φ|<,所以φ=-.
答案:x=+,k∈Z -
6.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象与x轴的一个交点到其相邻的一条对称轴的距离为,若f=,则函数f(x)在上的最小值为________.
解析:由题意得,函数f(x)的最小正周期T=4×=π=,解得ω=2.
因为点在函数f(x)的图象上,
所以Asin=0,
解得φ=kπ+,k∈Z,由0<φ<π,可得φ=.
因为f=,所以Asin=,
解得A=,所以f(x)=sin.
当x∈时,2x+∈,
所以sin∈,
所以f(x)的最小值为-.
答案:-
课件44张PPT。三角函数的图象与性质小题考法——二讲第考点(一) 三角函数的图象及应用考点(二) 三角函数的性质及应用考点(三) 三角函数的值域与最值问题必备知能·自主补缺
“课时跟踪检测”见“课时跟踪检测(二)”
(单击进入电子文档)
谢观看THANK YOU FOR WATCHING谢课时跟踪检测(二) 小题考法——三角函数的图象与性质
A组——10+7提速练
一、选择题
1.函数f(x)=tan的单调递增区间是(  )
A.(k∈Z)
B.(k∈Z)
C.(k∈Z)
D.(k∈Z)
解析:选B 由kπ-<2x-2.为了得到函数y=3sin 2x+1的图象,只需将y=3sin x的图象上的所有点(  )
A.横坐标伸长2倍,再向上平移1个单位长度
B.横坐标缩短倍,再向上平移1个单位长度
C.横坐标伸长2倍,再向下平移1个单位长度
D.横坐标缩短倍,再向下平移1个单位长度
解析:选B 将y=3sin x的图象上的所有点的横坐标缩短倍得到y=3sin 2x的图象,再将y=3sin 2x的图象再向上平移1个单位长度即得y=3sin 2x+1的图象,故选B.
3.函数f(x)=sin(ωx+φ)的部分图象如图所示,则函数f(x)的解析式为(  )
A.f(x)=sin    B.f(x)=sin
C.f(x)=sin D.f(x)=sin
解析:选A 由题图可知, 函数f(x)的最小正周期为T==×4=π,所以ω=2,即f(x)=sin(2x+φ).又函数f(x)的图象经过点,所以sin=1,则+φ=2kπ+(k∈Z),解得φ=2kπ+(k∈Z),又|φ|<,所以φ=,即函数f(x)=sin,故选A.
4.(2018·宁波模拟)将函数y=sin的图象向左平移个单位长度,所得函数图象的一条对称轴方程是(  )
A.x= B.x=-
C.x= D.x=
解析:选A 将函数y=sin的图象向左平移个单位长度,可得y=sin=sin的图象,令2x+=kπ+,求得x=+,k∈Z,可得所得函数图象的对称轴方程为x=+,k∈Z,令k=1,可得所得函数图象的一条对称轴方程为x=,故选A.
5.已知函数f(x)=4cos(ωx+φ)(ω>0,0<φ<π)为奇函数,A(a,0),B(b,0)是其图象上两点,若|a-b|的最小值是1,则f =(  )
A.2 B.-2
C. D.-
解析:选B ∵函数f(x)=4cos(ωx+φ)(ω>0,0<φ<π)为奇函数,∴φ=,f(x)=-4sin ωx.∵A(a,0),B(b,0)是其图象上两点,|a-b|的最小值是1,∴×=1,∴ω=π,f(x)=-4sin πx,则f=-4sin=-2.
6.(2017·天津高考)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f=2,f=0,且f(x)的最小正周期大于2π,则(  )
A.ω=,φ= B.ω=,φ=-
C.ω=,φ=- D.ω=,φ=
解析:选A 法一:由f=2,
得ω+φ=+2kπ(k∈Z), ①
由f=0,得ω+φ=k′π(k′∈Z), ②
由①②得ω=-+(k′-2k).
又最小正周期T=>2π,所以0<ω<1,ω=.
又|φ|<π,将ω=代入①得φ=.选项A符合.
法二:∵f=2,f=0,且f(x)的最小正周期大于2π,
∴-=(2m+1),m∈N,
∴T=,m∈N,
∵f(x)的最小正周期大于2π,∴T=3π,
∴ω==,∴f(x)=2sin.
由2sin=2,得φ=2kπ+,k∈Z.
又|φ|<π,∴取k=0,得φ=.故选A.
7.若把函数y=2cos x(cos x-sin x)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是(  )
A. B.
C. D.
解析:选A 法一:y=2cos x(cosx-sin x)=2cos2x-2sin xcos x=1+cos 2x-sin 2x=1+2sin,该函数的图象向左平移m个单位长度后,所得图象对应的函数为y=1+2sin=1+2sin,由题意知2m+=+kπ,k∈Z,解得m=-,k∈Z,取k=1,得到m的最小值为,故选A.
法二:y=2cos x(cos x-sin x)=2cos2x-2sin xcos x=1+cos 2x-sin 2x=1+2sin,令2x+=kπ+,k∈Z,则x=-,k∈Z,则原函数的图象在x轴右侧且离y轴最近的一条对称轴为直线x=.因为原函数的图象向左平移m(m>0)个单位长度后得到的图象关于y轴对称,所以m的最小值为,故选A.
8.(2019届高三·温州期中)设α是三角形的一个内角,在sin α,sin,cos α,cos 2α,tan 2α,tan中可能为负数的值的个数是(  )
A.2 B.3
C.4 D.5
解析:选A ∵α是三角形的一个内角,
若0<α<,则0<<,0<2α<π.
∴在sin α,sin,cos α,cos 2α,tan 2α,tan中可能为负数的是cos 2α与tan 2α;
若α=,则=,2α=π.
∴在sin α,sin,cos α,cos 2α,tan 2α,tan中为负数的是cos 2α;
若<α≤,则<≤,π<2α≤.
∴在sin α,sin,cos α,cos 2α,tan 2α,tan中可能为负数的是cos α与cos 2α;
若<α<π,则<<,<2α<2π.
∴在sin α,sin,cos α,cos 2α,tan 2α,tan中可能为负数的是cos α与tan 2α.
∴在sin α,sin,cos α,cos 2α,tan 2α,tan中可能为负数的值的个数是2个.故选A.
9.已知x=是函数f(x)=sin(2x+φ)+cos(2x+φ)(0<φ<π)图象的一条对称轴,将函数f(x)的图象向右平移个单位长度后得到函数g(x)的图象,则函数g(x)在上的最小值为(  )
A.-2 B.-1
C.- D.-
解析:选B f(x)=sin(2x+φ)+cos(2x+φ)=2sin.∵x=是f(x)=2sin图象的一条对称轴,∴2×++φ=kπ+(k∈Z),即φ=+kπ(k∈Z),∵0<φ<π,∴φ=,则f(x)=2sin,∴g(x)=2sin=-2sin,则g(x)在上的最小值为g=-1,故选B.
10.(2019届高三·浙江六校联考)已知函数f(x)=3sin(ωx+θ)的图象的相邻两条对称轴之间的距离为,将函数f(x)=3sin(ωx+θ)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P ,则φ的一个可能值是(  )
A. B.
C. D.
解析:选D 由函数f(x)=3sin(ωx+θ)的图象的相邻两条对称轴之间的距离为,得函数f(x)的最小正周期为π,则π=,所以ω=2,函数f(x)=3sin(2x+θ)的图象向右平移φ个单位长度,得到g(x)=3sin(2x+θ-2φ)的图象,因为f(x),g(x)的图象都经过点P,所以sin θ=,sin(θ-2φ)=,又-<θ<,所以θ=,所以sin=,所以-2φ=2kπ+(k∈Z)或-2φ=2kπ+(k∈Z),所以φ=-kπ(k∈Z)或φ=-kπ-(k∈Z),因为φ>0,所以结合选项知φ的一个可能值是.故选D.
二、填空题
11.已知函数f(x)=2sin(ωx+φ)对任意的x都有f =f ,则f =_______.
解析:函数f(x)=2sin(ωx+φ)对任意的x都有f =f ,则其图象的一条对称轴为x=,所以f=±2.
答案:±2
12.已知f(x)=sin(ωx+φ)(ω>0,|φ|<π)在区间[2,4]上单调,且f(2)=1,f(4)=-1,则ω=________,f(x)在区间上的值域是________.
解析:由题意知f(x)的最小正周期T=4,∴ω=,
∴f(x)=sin.又f(2)=sin(π+φ)=1,
∴π+φ=+2kπ,k∈Z.
又|φ|<π,∴φ=-,∴f(x)=sin.
由x∈,得x-∈,
∴sin∈,
即f(x)在区间上的值域为.
答案: 
13.(2018·金华模拟)已知函数f(x)=4sin xsin,则函数f(x)的最小正周期T=________,在区间上的值域为________.
解析:函数f(x)=4sin xsin =4sin x=2sin2x+2sin xcos x=sin 2x-cos 2x+1=2sin+1,
函数f(x)的最小正周期T==π.
∵x∈,∴2x-∈.
∴-∴0∴值域为(0,3].
答案:π (0,3]
14.设P为函数f(x)=sinx的图象上的一个最高点,Q为函数g(x)=cosx的图象上的一个最低点,则|PQ|的最小值是________.
解析:由题意知两个函数的周期都为T==4,由正、余弦函数的图象知,f(x)与g(x)的图象相差个周期,设P,Q分别为函数f(x),g(x)图象上的相邻的最高点和最低点,设P(x0,1),则Q(x0+1,-1),则|PQ|min==.
答案:
15.已知函数f(x)=cos xsin x(x∈R),则下列四个结论中正确的是________.(填序号)
①若f(x1)=-f(x2),则x1=-x2;
②f(x)的最小正周期是2π;
③f(x)在区间上是增函数;
④f(x)的图象关于直线x=对称.
解析:因为f(x)=cos xsin x=sin 2x,所以f(x)是周期函数,且最小正周期为T==π,所以①②错误;由2kπ-≤2x≤2kπ+(k∈Z),解得kπ-≤x≤kπ+(k∈Z),当k=0时,-≤x≤,此时f(x)是增函数,所以③正确;由2x=+kπ(k∈Z),得x=+(k∈Z),取k=1,则x=,故④正确.
答案:③④
16.(2018·全国卷Ⅰ)已知函数f(x)=2sin x+sin 2x,则f(x)的最小值是________.
解析:f′(x)=2cos x+2cos 2x=2cos x+2(2cos2x-1)
=2(2cos2x+cos x-1)=2(2cos x-1)(cos x+1).
∵cos x+1≥0,
∴当cos x<时,f′(x)<0,f(x)单调递减;
当cos x>时,f′(x)>0,f(x)单调递增.
∴当cos x=,f(x)有最小值.
又f(x)=2sin x+sin 2x=2sin x(1+cos x),
∴当sin x=-时,f(x)有最小值,
即f(x)min=2××=-.
答案:-
17.已知函数f(x)=Acos2(ωx+φ)+1的最大值为3,f(x)的图象与y轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+…+f(2 017)+f(2 018)=________.
解析:∵函数f(x)=Acos2(ωx+φ)+1=A·+1=cos(2ωx+2φ)+1+的最大值为3,∴+1+=3,∴A=2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即=4,∴ω=.再根据f(x)的图象与y轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<,∴2φ=,φ=.故函数f(x)的解析式为f(x)=cos+2=-sinx+2,∴f(1)+f(2)+…+f(2 017)+f(2 018)=-+2×2 018=504×0-sin-sin π+4 036=0-1-0+4 036=4 035.
答案:4 035
B组——能力小题保分练
1.曲线y=2coscos和直线y=在y轴右侧的交点的横坐标按从小到大的顺序依次记为P1,P2,P3,…,则|P3P7|=(  )
A.π B.2π
C.4π D.6π
解析:选B y=2coscos=cos2x-sin2x=cos 2x,故曲线对应的函数为周期函数,且最小正周期为π,直线y=在y轴右侧与函数y=2cos·cos在每个周期内的图象都有两个交点,又P3与P7相隔2个周期,故|P3P7|=2π,故选B.
2.已知函数f(x)=Asin(ωx+φ)的部分图象如图所示,则(  )
A.f(x)的图象关于直线x=-对称
B.f(x)的图象关于点对称
C.若方程f(x)=m在上有两个不相等的实数根,则实数m的取值范围是(-2,- ]
D.将函数y=2sin的图象向左平移个单位长度得到函数f(x)的图象
解析:选C 由题图可知,A=2,T=4×=π,∴ω==2.又f=2,
∴2sin=2,+φ=+2kπ,k∈Z,
∵|φ|<,∴φ=,
∴函数f(x)的解析式为f(x)=2sin,
∴当x=-时,2×+=-π,
f =2sin(-π)=0,
从而f(x)的图象关于点对称,而不是关于直线x=-对称,故A不正确;
当x=-时,2×+=-,
∴f(x)的图象关于直线x=-对称,而不是关于点对称,故B不正确;
当x∈时,2x+∈,f(x)∈[-2,  ],结合正弦函数图象的性质,可知若方程f(x)=m在上有两个不相等的实数根,则实数m的取值范围是(-2,- ],故C正确;
根据图象平移变换的法则,可知应将y=2sin的图象向左平移个单位长度得到f(x)的图象,故D不正确.故选C.
3.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数:
①f(x)=sin x+cos x;②f(x)=(sin x+cos x);
③f(x)=sin x;④f(x)=sin x+.
其中互为生成函数的是(  )
A.①② B.①④
C.③④ D.②④
解析:选B 首先化简题中①②两个函数解析式可得:①f(x)=sin,②f(x)=2sin,可知③f(x)=sin x的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f(x)=sin x不与其他函数互为生成函数;同理①f(x)=sin(④f(x)=sin x+)的图象与②f(x)=2sin的图象也必须经过伸缩变换才能重合,而④f(x)=sin x+的图象向左平移个单位长度,再向下平移个单位长度即可得到①f(x)=sin的图象,∴①④互为生成函数,故选B.
4.已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正常数)的最小正周期为π,且当x=时,函数f(x)取得最小值,则(  )
A.f(1)C.f(-1)解析:选C 因为函数f(x)=Asin(ωx+φ)的最小正周期为π,所以ω==2,故f(x)=Asin(2x+φ),因为当x=时,函数f(x)取得最小值,所以2×+φ=2kπ-,k∈Z,解得φ=2kπ-,k∈Z,又φ>0,故可取k=1,则φ=,故f(x)=Asin,所以f(-1)=Asin<0,f(1)=Asin>0,f(0)=Asin=A>0,故f(-1)最小.又sin=sin=sin>sin,故f(1)>f(0).综上可得f(-1)5.若函数f(x)=2sin(ω>0)的图象的对称轴与函数g(x)=cos(2x+φ)的图象的对称轴完全相同,则函数f(x)的图象的对称轴为________,φ=________.
解析:因为函数f(x)=2sin(ω>0)的图象的对称轴与函数g(x)=cos(2x+φ)的图象的对称轴完全相同,故它们的最小正周期相同,即=,所以ω=2,故函数f(x)=2sin.令2x+=kπ+,k∈Z,则x=+,k∈Z,故函数f(x)的图象的对称轴为x=+,k∈Z.令2x+φ=mπ,m∈Z,则x=-,m∈Z,故函数g(x)的图象的对称轴为x=-,m∈Z,故+-+=,m,n,k∈Z,即φ=(m+n-k)π-,m,n,k∈Z,又|φ|<,所以φ=-.
答案:x=+,k∈Z -
6.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象与x轴的一个交点到其相邻的一条对称轴的距离为,若f=,则函数f(x)在上的最小值为________.
解析:由题意得,函数f(x)的最小正周期T=4×=π=,解得ω=2.
因为点在函数f(x)的图象上,
所以Asin=0,
解得φ=kπ+,k∈Z,由0<φ<π,可得φ=.
因为f=,所以Asin=,
解得A=,所以f(x)=sin.
当x∈时,2x+∈,
所以sin∈,
所以f(x)的最小值为-.
答案:-
同课章节目录