2019年高三二轮复习数学浙江专版 专题一 第四讲 大题考法——三角函数、解三角形

文档属性

名称 2019年高三二轮复习数学浙江专版 专题一 第四讲 大题考法——三角函数、解三角形
格式 zip
文件大小 1.8MB
资源类型 教案
版本资源
科目 数学
更新时间 2019-04-27 10:08:47

文档简介

第四讲 大题考法——三角函数、解三角形
题型(一)
三角函数的图象与性质
主要考查三角函数的对称性、周期性、单调性、最值问题等.常结合三角恒等变换与图象变换考查.
[典例感悟]
[典例1] (2018·台州质量评估)已知函数f(x)=sin(ωx+φ)的最小正周期为π,且函数f(x)的图象上的一条对称轴为x=.
(1)求ω和φ的值;
(2)设函数g(x)=f(x)+f,求g(x)的单调递减区间.
[解] (1)因为f(x)=sin(ωx+φ)的最小正周期为π,
所以T==π,所以ω=2.
由2x+φ=kπ+,k∈Z,
得x=+-,k∈Z,
由=+-,得φ=kπ+,k∈Z,
又|φ|≤,所以φ=.
(2)函数g(x)=f(x)+f=sin+sin 2x=sin 2x+cos 2x+sin 2x=sin.
令2kπ+≤2x+≤2kπ+,k∈Z,
得kπ+≤x≤kπ+,k∈Z,
所以g(x)的单调递减区间为,k∈Z.
[备课札记] 


 
[方法技巧]
求解三角函数的奇偶性、对称性、周期、最值和单调区间等问题时,通常要运用各种三角函数公式,通过恒等变换(降幂、辅助角公式应用)将其解析式化为y=Asin(ωx+φ),y=Acos(ωx+φ)(A,ω,φ是常数,且A>0,ω≠0)的形式,再研究其各种性质.
有关常用结论与技巧:
(1)我们往往运用整体换元法来求解单调性与对称性,求y=Asin(ωx+φ)或y=Acos(ωx+φ)(A,ω,φ是常数,且A>0,ω≠0)的单调区间时一定要注意ω的取值情况,若ω<0,则最好用诱导公式将其转化为-ω>0后再去求解,否则极易出错.
(2)对y=Asin(ωx+φ),y=Acos(ωx+φ)(A,ω,φ是常数,且A>0,ω≠0)结合函数图象可观察出如下几点:
①函数图象的对称轴都经过函数的最值点,对称中心的横坐标都是函数的零点;
②相邻两对称轴(对称中心)间的距离都是半个周期;
③图象上相邻两个最大(小)值点之间的距离恰好等于一个周期.
[演练冲关]
1.(2017·浙江高考)已知函数f(x)=sin2x-cos2x-2sin xcos x(x∈R).
(1)求f的值;
(2)求f(x)的最小正周期及单调递增区间.
解:(1)由题意,f(x)=-cos 2x-sin 2x
=-2=-2sin,
故f=-2sin=-2sin =2.
(2)由(1)知f(x)=-2sin.
则f(x)的最小正周期是π.
由正弦函数的性质
令+2kπ≤2x+≤+2kπ,k∈Z,
解得+kπ≤x≤+kπ,k∈Z,
所以f(x)的单调递增区间是(k∈Z).
2.已知函数f(x)=sin ωx+cos ωx+c(ω>0,x∈R,c为常数)的图象经过点,且相邻两个最低点的距离为π.
(1)求函数f(x)的解析式;
(2)将函数f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求g(x)在[0,π]的最大值与最小值.
解:(1)∵f(x)=sin ωx+cos ωx+c=sin+c,且相邻两个最低点的距离为π,∴ω=2,
又函数f(x)的图象经过点,
∴sin+c=,∴c=,
∴f(x)=sin+.
(2)∵函数f(x)的图象向右平移个单位长度,得到函数g(x)的图象,
∴g(x)=sin+=sin+,
∵x∈[0,π],
∴2x-∈,
∴sin∈,
∴g(x)的最大值为1+,最小值为0.
题型(二)
三角形基本量的求解问题
主要考查利用正、余弦定理求解三角形的边长或角的大小?或三角函数值?,且常与三角恒等变换综合考查.
[典例感悟]
[典例2] 在△ABC中,内角A,B,C的对边分别是a,b,c,若sin A+cos A=1-sin .
(1)求sin A的值;
(2)若c2-a2=2b,且sin B=3cos C,求b.
[解] (1)由已知,得2sin cos +1-2sin2 =1-sin ,即sin ·=0,
在△ABC中,sin ≠0,
所以2sin -2cos -1=0,
即sin -cos =,
则sin2 -2sin cos +cos2 =,
从而sin A=.
(2)由已知sin B=3cos C,
结合(1)得sin B=4cos Csin A.
法一:利用正弦定理和余弦定理得
b=×a,即b2=2(c2-a2).
又c2-a2=2b,∴b2=4b,在△ABC中,b≠0,∴b=4.
法二:∵c2=a2+b2-2abcos C,且c2-a2=2b,
∴2b=b2-2abcos C,
在△ABC中,b≠0,∴b=2+2acos C,
又sin B=4cos Csin A,由正弦定理,得b=4acos C,
解得b=4.
[备课札记] 

 

[方法技巧]
利用正、余弦定理求解三角形基本量的方法
[演练冲关]
3.在△ABC中,内角A,B,C的对边分别为a,b,c,若b2+c2-a2=bc.
(1)求角A的大小;
(2)若a=,求BC边上的中线AM的最大值.
解:(1)由b2+c2-a2=bc及余弦定理,得cos A===,又0(2)∵AM是BC边上的中线,
∴BM=CM=,
∴在△ABM中,AM2+-2AM··cos∠AMB=c2,①
在△ACM中,AM2+-2AM··cos∠AMC=b2,②
又∠AMB=π-∠AMC,
∴cos∠AMB=-cos∠AMC,
即cos∠AMB+cos∠AMC=0,
则①+②整理得AM2=-.
又a=,A=,∴b2+c2-3=bc≤,
∴b2+c2≤6,∴AM2=-≤,即AM≤,
∴BC边上的中线AM的最大值为.
4.(2018·天津高考)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsin A=acos.
(1)求角B的大小;
(2)设a=2,c=3,求b和sin(2A-B)的值.
解:(1)在△ABC中,
由正弦定理=,可得bsin A=asin B.
又因为bsin A=acos,
所以asin B=acos,
即sin B=cos B+sin B,
所以tan B=.
因为B∈(0,π),所以B=.
(2)在△ABC中,由余弦定理及a=2,c=3,B=,
得b2=a2+c2-2accos B=7,故b=.
由bsin A=acos,可得sin A=.
因为a<c,所以cos A=.
所以sin 2A=2sin Acos A=,
cos 2A=2cos2A-1=.
所以sin(2A-B)=sin 2Acos B-cos 2Asin B
=×-×=.
题型(三)
与三角形面积有关的问题
主要考查三角形面积的计算或已知三角形的面积求边或角,涉及正、余弦定理及三角形面积公式.
[典例感悟]
[典例3] (2016·浙江高考)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acos B.
(1)证明:A=2B;
(2)若△ABC的面积S=,求角A的大小.
[解] (1)证明:由正弦定理得sin B+sin C=2sin Acos B,
故2sin Acos B=sin B+sin(A+B)
=sin B+sin Acos B+cos Asin B,
于是 sin B=sin(A-B).
又A,B∈(0,π),故0<A-B<π,
所以B=π-(A-B)或B=A-B,
因此A=π(舍去)或A=2B,所以A=2B.
(2)由S=得absin C=,
故有sin Bsin C=sin A=sin 2B=sin Bcos B.
因为 sin B≠0,所以 sin C=cos B.
又B,C∈(0,π),所以C=±B.
当B+C=时,A=;
当C-B=时,A=.
综上,A=或A=.
[备课札记] 

 
[方法技巧]
求解与三角形面积有关问题的步骤
[演练冲关]
5.(2019届高三·浙江新高考调研卷)在△ABC中,角A,B,C的对边分别为a,b,c.已知=,A+3C=π.
(1)求cos C的值;
(2)若b=,求△ABC的面积.
解:(1)∵A+B+C=π,A+3C=π,
∴B=2C.
由=,得=,化简得cos C=.
(2)∵C∈(0,π),∴sin C== =.
∵B=2C,∴cos B=cos 2C=2cos2C-1=2×-1=,∴sin B=.
∵A+B+C=π,
∴sin A=sin(B+C)=sin Bcos C+cos Bsin C=×+×=.
∵=,b=,∴c=.
∴△ABC的面积S=bcsin A=×××=.
6.在锐角△ABC中,a,b,c分别为角A,B,C的对边,且4sin Acos2A-cos(B+C)=sin 3A+.
(1)求角A的大小;
(2)若b=2,求△ABC面积的取值范围.
解:(1)∵A+B+C=π,∴cos(B+C)=-cos A.①
∵3A=2A+A,
∴sin 3A=sin(2A+A)=sin 2Acos A+cos 2Asin A.②
又sin 2A=2sin Acos A,③
将①②③代入已知等式,得2sin 2Acos A+cos A=sin 2Acos A+cos 2Asin A+,
整理得sin A+cos A=,
即sin=,
又A∈,
∴A+=,即A=.
(2)由(1)得B+C=,∴C=-B,
∵△ABC为锐角三角形,
∴-B∈且B∈,解得B∈,
在△ABC中,由正弦定理得=,
∴c===+1,
又B∈,∴∈(0,),∴c∈(1,4),
∵S△ABC=bcsin A=c,
∴S△ABC∈.
故△ABC面积的取值范围为.
题型(四)
三角函数与解三角形综合问题
此类问题综合考查三角恒等变换、三角函数的性质与解三角形等问题.
[典例感悟]
[典例4] (2018·嘉兴高三测试)已知函数f(x)=cos+(sin x+cos x)2.
(1)求函数f(x)的最大值和最小正周期;
(2)设△ABC的三边a,b,c所对的角分别为A,B,C,若a=2,c=,f=,求b的值.
[解] (1)f(x)=cos 2x-sin 2x+(1+sin 2x)=sin+,
所以f(x)的最大值为1+,最小正周期T=π.
(2)因为f=sin+=cos+=,
所以cos=0,因为0由余弦定理c2=a2+b2-2abcos C,可得b2-2b-3=0,
因为b>0,所以b=3.
[备课札记] 

 

[方法技巧]
三角函数与解三角形的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.
[演练冲关]
7.(2019届高三·浙江六校联考)已知f(x)=cos xsin+1.
(1)求f(x)在[0,π]上的单调递增区间;
(2)在△ABC中,若角A,B,C的对边分别是a,b,c,且f(B)=,sin Asin C=sin2B,求a-c的值.
解:f(x)=cos xsin+1
=cos x+1
=sin 2x-×+1
=sin 2x-cos 2x+
=sin+.
(1)由2kπ-≤2x-≤2kπ+,k∈Z,
得kπ-≤x≤kπ+,k∈Z,
又x∈[0,π],
∴f(x)在[0,π]上的单调递增区间是和.
(2)由f(B)=sin+=,
得sin=1.
又B是△ABC的内角,∴2B-=,得B=.
由sin Asin C=sin2B及正弦定理可得ac=b2.
在△ABC中,由余弦定理b2=a2+c2-2accos B,
得ac=(a-c)2+2ac-ac,则a-c=0.
8.已知函数f(x)=sin ωxcos ωx-sin2ωx+1(ω>0)的图象中相邻两条对称轴之间的距离为.
(1)求ω的值及函数f(x)的单调递减区间;
(2)已知a,b,c分别为△ABC中角A,B,C的对边,且满足a=,f(A)=1,求△ABC面积S的最大值.
解:(1)f(x)=sin 2ωx-+1
=sin+.
因为函数f(x)的图象中相邻两条对称轴之间的距离为,所以T=π,即=π,所以ω=1.
所以f(x)=sin+.
令+2kπ≤2x+≤+2kπ(k∈Z),
解得+kπ≤x≤+kπ(k∈Z).
所以函数f(x)的单调递减区间为(k∈Z).
(2)由f(A)=1,得sin=.
因为2A+∈,
所以2A+=,得A=.
由余弦定理得a2=b2+c2-2bccos A,
即()2=b2+c2-2bccos ,
所以bc+3=b2+c2≥2bc,
解得bc≤3,当且仅当b=c时等号成立.
所以S△ABC=bcsin A≤×3×=,
所以△ABC面积S的最大值为.
                  [技法指导]
1.常用的变角技巧
(1)已知角与特殊角的变换;
(2)已知角与目标角的变换;
(3)角与其倍角的变换;
(4)两角与其和差角的变换以及三角形内角和定理的变换运用.如:α=(α+β)-β=(α-β)+β,2α=(α+β)+(α-β),2α=(β+α)-(β-α),α+β=2·,=-.
2.常用的变式技巧
主要从函数名、次数、系数方面入手,常见有:
(1)讨论三角函数的性质时,常常将它化为一次的单角的三角函数来讨论;
(2)涉及sin x±cos x、sin x·cos x的问题,常做换元处理,如令t=sin x±cos x∈[-,],将原问题转化为关于t的函数来处理;
(3)在解决三角形的问题时,常利用正、余弦定理化边为角或化角为边等.
[典例] △ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.
(1)求C;
(2)若c=,△ABC的面积为,求△ABC的周长.
[解题示范] 
(1)由已知2cos C(acos B+bcos A)=c及正弦定理得
2cos C(sin Acos B+sin B·cos A)=sin C,
即2cos Csin(A+B)=sin C,
故2cos Csin C=sin C.
可得cos C=,
所以C=.
(2)由已知得absin C=.又C=,所以ab=6.
由已知及余弦定理得a2+b2-2abcos C=7,
故a2+b2=13,从而(a+b)2=25,即a+b=5.
所以△ABC的周长为5+.
[思维升华]
“明确思维起点,把握变换方向,抓住内在联系,合理选择公式”是三角变换的基本要诀.在解题时,要紧紧抓住“变”这一核心,灵活运用公式与性质,仔细审题,快速运算.
[应用体验]
在△ABC中,内角A,B,C的对边分别为a,b,c,面积为S,已知2acos2+2ccos2=b.
(1)求证:2(a+c)=3b;
(2)若cos B=,S=,求b.
解:(1)证明:由已知得,a(1+cos C)+c(1+cos A)=b.
在△ABC中,过B作BD⊥AC,垂足为D(图略),
则acos C+ccos A=CD+AD=b.
∴a+c=b,即2(a+c)=3b.
(2)∵cos B=,∴sin B=.
∵S=acsin B=ac=,∴ac=8.
又b2=a2+c2-2accos B=(a+c)2-2ac(1+cos B),
又由(1)知,2(a+c)=3b,
∴b2=-2×8×,解得b=4.

1.(2018·浙江高考)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P.
(1)求sin(α+π)的值;
(2)若角β满足sin(α+β)=,求cos β的值.
解:(1)由角α的终边过点P,
得sin α=-.
所以sin(α+π)=-sin α=.
(2)由角α的终边过点P,
得cos α=-.
由sin(α+β)=,得cos(α+β)=±.
由β=(α+β)-α,
得cos β=cos(α+β)cos α+sin(α+β)sin α,
所以cos β=-或cos β=.
2.(2019届高三·浙江名校联考)已知在△ABC中,角A,B,C所对的边分别为a,b,c,且=.
(1)若=,求角A的大小;
(2)若a=1,tan A=2,求△ABC的面积.
解:(1)由=及正弦定理得sin B(1-2cos A)=2sin Acos B,
即sin B=2sin Acos B+2cos Asin B=2sin(A+B)=2sin C,即b=2c.
又由=及余弦定理,得cos A==?A=.
(2)∵tan A=2,∴cos A=,sin A=.
由余弦定理cos A=,得=,
解得c2=,
∴S△ABC=bcsin A=c2sin A=×=.
3.(2019届高三·绍兴六校质检)已知函数f(x)=mcos x+sin的图象经过点P.
(1)求函数f(x)的单调递增区间;
(2)若f(α)=,α∈,求sin α的值.
解:(1)由题意可知f=,
即+=,解得m=1.
所以f(x)=cos x+sin=cos x+sin x= sin,
令-+2kπ≤x+≤+2kπ(k∈Z),
解得-+2kπ≤x≤+2kπ(k∈Z).
所以函数f(x)的单调递增区间为
(k∈Z).
(2)由f(α)=,得sin=,
所以sin=.
又α∈,所以α+∈,sin=<,
所以cos=- =-.
所以sin α=sin=×-×=.
4.(2018·浙江模拟)已知函数f(x)=sin 2x+2cos2x-1,x∈R.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)在△ABC中,A,B,C的对边分别为a,b,c,已知c=,f(C)=1,sin B=2sin A,求a,b的值.
解:(1)f(x)=sin 2x+cos 2x=2sin,
所以函数f(x)的最小正周期T==π,
令+2kπ≤2x+≤+2kπ(k∈Z),
得+kπ≤x≤+kπ(k∈Z),
所以函数f(x)的单调递减区间为(k∈Z).
(2)因为f(C)=2sin=1,所以C=,
所以()2=a2+b2-2abcos,a2+b2-ab=3,
又因为sin B=2sin A,所以b=2a,
解得a=1,b=2,
所以a,b的值分别为1,2.
5.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.
(1)求cos B;
(2)若a+c=6,△ABC的面积为2,求b.
解:(1)由题设及A+B+C=π得sin B=8sin2,
即sin B=4(1-cos B),
故17cos2B-32cos B+15=0,
解得cos B=,cos B=1(舍去).
(2)由cos B=,得sin B=,
故S△ABC=acsin B=ac.
又S△ABC=2,则ac=.
由余弦定理及a+c=6得
b2=a2+c2-2accos B
=(a+c)2-2ac(1+cos B)
=36-2××
=4.
所以b=2.
6.如图,已知D是△ABC的边BC上一点.
(1)若cos∠ADC=-,∠B=,且AB=DC=7,求AC的长;
(2)若∠B=,AC=2,求△ABC面积的最大值.
解:(1)因为cos∠ADC=-,
所以cos∠ADB=cos(π-∠ADC)=-cos∠ADC=,所以sin∠ADB=.
在△ABD中,由正弦定理,得AD===5,
所以在△ACD中,由余弦定理,得
AC=
==.
(2)在△ABC中,由余弦定理,得AC2=20=AB2+BC2-2AB·BCcos∠B=AB2+BC2-AB·BC≥(2-)AB·BC,
所以AB·BC≤=40+20,
所以S△ABC=AB·BCsin∠B≤10+5,
所以△ABC面积的最大值为10+5.
课件46张PPT。三角函数、解三角形大题考法——四讲第题型(一) 三角函数的图象与性质题型(二) 三角形基本量的求解问题题型(三) 与三角形面积有关的问题题型(四) 三角函数与解三角形综合问题[高考5个大题] 题题研诀窃三角函数问题重在“变”——变角、变式
“课时跟踪检测”见“课时跟踪检测(四)”
(单击进入电子文档)
谢观看THANK YOU FOR WATCHING谢课时跟踪检测(四)大题考法——三角函数、解三角形
1.(2018·浙江高考)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P .
(1)求sin(α+π)的值;
(2)若角β满足sin(α+β)=,求cos β的值.
解:(1)由角α的终边过点P ,
得sin α=-.
所以sin(α+π)=-sin α=.
(2)由角α的终边过点P ,
得cos α=-.
由sin(α+β)=,得cos(α+β)=±.
由β=(α+β)-α,
得cos β=cos(α+β)cos α+sin(α+β)sin α,
所以cos β=-或cos β=.
2.(2019届高三·浙江名校联考)已知在△ABC中,角A,B,C所对的边分别为a,b,c,且=.
(1)若=,求角A的大小;
(2)若a=1,tan A=2,求△ABC的面积.
解:(1)由=及正弦定理得sin B(1-2cos A)=2sin Acos B,
即sin B=2sin Acos B+2cos Asin B=2sin(A+B)=2sin C,即b=2c.
又由=及余弦定理,得cos A==?A=.
(2)∵tan A=2,∴cos A=,sin A=.
由余弦定理cos A=,得=,
解得c2=,
∴S△ABC=bcsin A=c2sin A=×=.
3.(2019届高三·绍兴六校质检)已知函数f(x)=mcos x+sin的图象经过点P.
(1)求函数f(x)的单调递增区间;
(2)若f(α)=,α∈,求sin α的值.
解:(1)由题意可知f=,
即+=,解得m=1.
所以f(x)=cos x+sin=cos x+sin x= sin,
令-+2kπ≤x+≤+2kπ(k∈Z),
解得-+2kπ≤x≤+2kπ(k∈Z).
所以函数f(x)的单调递增区间为(k∈Z).
(2)由f(α)=,得sin=,
所以sin=.
又α∈,所以α+∈,sin=<,
所以cos=- =-.
所以sin α=sin=×-×=.
4.(2018·浙江模拟)已知函数f(x)=sin 2x+2cos2x-1,x∈R.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)在△ABC中,A,B,C的对边分别为a,b,c,已知c=,f(C)=1,sin B=2sin A,求a,b的值.
解:(1)f(x)=sin 2x+cos 2x=2sin,
所以函数f(x)的最小正周期T==π,
令+2kπ≤2x+≤+2kπ(k∈Z),
得+kπ≤x≤+kπ(k∈Z),
所以函数f(x)的单调递减区间为(k∈Z).
(2)因为f(C)=2sin=1,所以C=,
所以()2=a2+b2-2abcos,a2+b2-ab=3,
又因为sin B=2sin A,所以b=2a,
解得a=1,b=2,
所以a,b的值分别为1,2.
5.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.
(1)求cos B;
(2)若a+c=6,△ABC的面积为2,求b.
解:(1)由题设及A+B+C=π得sin B=8sin2,
即sin B=4(1-cos B),
故17cos2B-32cos B+15=0,
解得cos B=,cos B=1(舍去).
(2)由cos B=,得sin B=,
故S△ABC=acsin B=ac.
又S△ABC=2,则ac=.
由余弦定理及a+c=6得
b2=a2+c2-2accos B
=(a+c)2-2ac(1+cos B)
=36-2××
=4.
所以b=2.
6.如图,已知D是△ABC的边BC上一点.
(1)若cos∠ADC=-,∠B=,且AB=DC=7,求AC的长;
(2)若∠B=,AC=2,求△ABC面积的最大值.
解:(1)因为cos∠ADC=-,
所以cos∠ADB=cos(π-∠ADC)=-cos∠ADC=,所以sin∠ADB=.
在△ABD中,由正弦定理,得AD===5,
所以在△ACD中,由余弦定理,得
AC=
==.
(2)在△ABC中,由余弦定理,得AC2=20=AB2+BC2-2AB·BCcos∠B=AB2+BC2-AB·BC≥(2-)AB·BC,
所以AB·BC≤=40+20,
所以S△ABC=AB·BCsin∠B≤10+5,
所以△ABC面积的最大值为10+5.
同课章节目录