[析考情·明重点]
小题考情分析
大题考情分析
常考点
1.平面向量的数量积及应用(5年5考)
2.三角函数的图象与性质及应用(5年5考)
3.利用正、余弦定理解三角形(5年3考)
浙江高考对此部分内容在解答题中的考查主要集中在三角恒等变换、解三角形、三角函数的性质.三角恒等变换一般不单独考查,常结合正、余弦定理考查解三角形,结合三角函数的性质考查三角函数,近两年三角函数的概念、性质和三角恒等变换是考查的热点,试题难度中档偏下.
偶考点
1.平面向量的线性运算
2.三角恒等变换与求值
第一讲 小题考法——平面向量
考点(一)
平面向量的线性运算
主要考查平面向量的加、减、数乘等线性运算以及向量共线定理的应用.
[典例感悟]
[典例] (1)已知向量a=(1,3),b=(-2,k),且(a+2b)∥(3a-b),则实数k=( )
A.4 B.-5
C.6 D.-6
(2)(2018·浙江三模)已知向量e1=(1,2),e2=(3,4),且x,y∈R,xe1+ye2=(5,6),则x-y=( )
A.3 B.-3
C.1 D.-1
(3)(2019届高三 ·浙江名校联考)若点P是△ABC的外心,且++λ=0,∠ACB=120°,则实数λ的值为( )
A. B.-
C.-1 D.1
[解析] (1)a+2b=(-3,3+2k),3a-b=(5,9-k),由题意可得-3(9-k)=5(3+2k),解得k=-6.故选D.
(2)∵向量e1=(1,2),e2=(3,4),且x,y∈R,xe1+ye2=(5,6),则(x+3y,2x+4y)=(5,6),
∴解得∴x-y=-3.故选B.
(3)设AB的中点为D,则+=2.因为++λ=0,所以2+λ=0,所以向量,共线.又P是△ABC的外心,所以PA=PB,所以PD⊥AB,所以CD⊥AB.因为∠ACB=120°,所以∠APB=120°,所以四边形APBC是菱形,从而+=2=,所以2+λ=+λ=0,所以λ=-1,故选C.
[答案] (1)D (2)B (3)C
[方法技巧]
掌握平面向量线性运算的2种技巧
(1)对于平面向量的线性运算问题,要尽可能转化到三角形或平行四边形中,灵活运用三角形法则、平行四边形法则,紧密结合图形的几何性质进行运算.
(2)在证明两向量平行时,若已知两向量的坐标形式,常利用坐标运算来判断;若两向量不是以坐标形式呈现的,常利用共线向量定理(当b≠0时,a∥b?存在唯一实数λ,使得a=λb)来判断.
[演练冲关]
1.(2019届高三·台州检测)已知e1,e2是平面内两个不共线向量,=e1-ke2,=2e1-e2,=3e1-3e2,若A,B,D三点共线,则k的值为( )
A.2 B.-3
C.-2 D.3
解析:选A ∵=2e1-e2,=3e1-3e2,
∴=-=(3e1-3e2)-(2e1-e2)=e1-2e2.
∵A,B,D三点共线,
∴与共线,
∴存在唯一的实数λ,使得e1-ke2=λ(e1-2e2).
即解得k=2.
2.(2018·浙江模拟)如图,在△ABC中,点D,E是线段BC上两个动点,且+=x+y,则+的最小值为( )
A. B.2
C. D.
解析:选D 设=m+n,=λ+μ,
∵B,D,E,C共线,∴m+n=1,λ+μ=1.
∵+=x+y,则x+y=2,
∴+=(x+y)=≥=.则+的最小值为.
3.(2018·衢州期中)已知D为△ABC的边AB的中点,M在DC上满足5=+3,则△ABM与△ABC的面积比为( )
A. B.
C. D.
解析:选C 因为D是AB的中点,所以=2,
因为5=+3,
所以2-2=3-3,即2=3,
所以5=3+3=3,所以=,
设h1,h2分别是△ABM,△ABC的AB边上的高,
所以=====.
考点(二)
平面向量的数量积及应用
主要考查数量积的运算、夹角,向量模的计算问题及平面向量中的最值问题.
[典例感悟]
[典例] (1)(2018·遂宁模拟)如图,在△ABC中,AD⊥AB,= ,||=1,则·的值为( )
A.2 B.
C. D.
(2)向量a,b满足|a|=4,b·(a-b)=0.若|λa-b|的最小值为2(λ∈R),则a·b=( )
A.0 B.4
C.8 D.16
(3)(2018·杭州二模)记M的最大值和最小值分别为Mmax和Mmin.若平面向量a,b,c满足|a|=|b|=a·b=c·(a+2b-2c)=2,则( )
A.|a-c|max= B.|a+c|max=
C.|a-c|min= D.|a+c|min=
[解析] (1)∵在△ABC中,AD⊥AB,
∴·=0,
·=(+)·
=·+·
=·
= ·
=(-)·
= ·- ·
=.
(2)法一:由已知得a·b=b2,则|λa-b|==(λ∈R),当且仅当λ=时,|λa-b|有最小值2,所以162-2a·b+a·b=4,所以(a·b-8)2=0,故a·b=8.故选C.
法二:向量a,b满足|a|=4,b·(a-b)=0,即a·b=b2.由题意知|λa-b|==≥2(λ∈R),即16λ2-2λa·b+a·b-4≥0对于λ∈R恒成立,所以对于方程16λ2-2λa·b+a·b-4=0,Δ=4(a·b)2-64(a·b-4)≤0,即(a·b-8)2≤0,所以(a·b-8)2=0,所以a·b=8.故选C.
(3)由a·b=2×2cos〈a,b〉=2,
可得cos〈a,b〉=,sin〈a,b〉=,
设=a=(2,0),=b=(1,),=c=(x,y),
可得(x,y)·(4-2x,2-2y)=2,
即x(4-2x)+y(2-2y)=2,
可化为x2+y2-2x-y+1=0,
则C在以圆心P,半径r=的圆上运动,
且|a-c|表示点A与点C的距离,
显然最大值为|AP|+r= +=,
最小值为|AP|-r= -=.
设D(-2,0),则|a+c|=|+|=|-+|=||,
则|a+c|表示点D(-2,0)与点C的距离,
显然最大值为|DP|+r= +=,
最小值为|DP|-r=.
[答案] (1)D (2)C (3)A
[方法技巧]
在求解与向量的模有关的问题时,往往会涉及“平方”技巧,注意对结论(a±b)2=|a|2+|b|2±2a·b,(a+b+c)2=|a|2+|b|2+|c|2+2(a·b+b·c+a·c)的灵活运用.另外,向量作为工具性的知识,具备代数和几何两种特征,求解此类问题时可以使用数形结合的思想,从而加快解题速度.
[演练冲关]
1.如图,在四边形ABCD中,AB=6,AD=2,=,AC与BD相交于点O,E是BD的中点,若·=8,则·=( )
A.-9 B.-
C.-10 D.-
解析:选D 由=,可得DC∥AB,且DC=2,则△AOB∽△COD,===+,又E是BD的中点,所以=+,则·=·=++·=++·=8,则·=4,则·=·=--·=4-×36-×4=-.
2.(2018·温州二模)已知向量a,b满足|a|=1,且对任意实数x,y,|a-xb|的最小值为,|b-ya|的最小值为,则|a+b|=( )
A. B.
C.或 D.或
解析:选C 取a=(1,0),b=(c,d),
则|a-xb|=
= ≥,
∴1-=,
又|b-ya|=≥,可得d2=3,
解得c2=1.
∴|a+b|===或.
3.(2019届高三·湖州五校模拟)设a,b满足|a|=1,|a+2b|=2,则|2a-b|的取值范围是________.
解析:设|2a-b|=t,则4a2-4a·b+b2=t2,
∵|a+2b|=2,则a2+4a·b+4b2=4,
∴5a2+5b2=t2+4,
∵|a|=1,∴t2=1+5b2,
∵|a+2b|=2,|a|=1,
∴由|a+2b|≤|a|+2|b|=1+2|b|,得|b|≥,
由|2b+a|≥2|b|-|a|=2|b|-1,得|b|≤,
∴≤b2≤,
∴t2=1+5b2∈,
∴≤t≤,
∴|2a-b|∈.
答案:
(一) 主干知识要记牢
1.平面向量的两个充要条件
若两个非零向量a=(x1,y1),b=(x2,y2),则
(1)a∥b?a=λb(b≠0)?x1y2-x2y1=0.
(2)a⊥b?a·b=0?x1x2+y1y2=0.
2.平面向量的性质
(1)若a=(x,y),则|a|==.
(2)若A(x1,y1),B(x2,y2),则||=.
(3)若a=(x1,y1),b=(x2,y2),θ为a与b的夹角,则cos θ== .
(4)|a·b|≤|a|·|b|.
(二) 二级结论要用好
1.三点共线的判定
(1)A,B,C三点共线?,共线.
(2)向量,,中三终点A,B,C共线?存在实数α,β使得=α+β,且α+β=1.
[针对练1] 在?ABCD中,点E是AD边的中点,BE与AC相交于点F,若=m+n (m,n∈R),则=________.
解析:如图,∵=2,=m+n,∴=+=m+(2n+1),
∵F,E,B三点共线,∴m+2n+1=1,∴=-2.
答案:-2
2.中点坐标和三角形的重心坐标
(1)设P1,P2的坐标分别为(x1,y1),(x2,y2),则线段P1P2的中点P的坐标为.
(2)三角形的重心坐标公式:设△ABC的三个顶点的坐标分别为A(x1,y1),B(x2,y2),C(x3,y3),则△ABC的重心坐标为.
3.三角形“四心”向量形式的充要条件
设O为△ABC所在平面上一点,角A,B,C所对的边长分别为a,b,c,则
(1)O为△ABC的外心?||=||=||=.
(2)O为△ABC的重心?++=0.
(3)O为△ABC的垂心?·=·=·.
(4)O为△ABC的内心?a+b+c=0.
(三) 易错易混要明了
1.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意向量平行;λ0=0(λ∈R),而不是等于0;0与任意向量的数量积等于0,即0·a=0;但不说0与任意非零向量垂直.
2.当a·b=0时,不一定得到a⊥b,当a⊥b时,a·b=0;a·b=c·b,不能得到a=c,即消去律不成立;(a·b)·c与a·(b·c)不一定相等,(a·b)·c与c平行,而a·(b·c)与a平行.
3.两向量夹角的范围为[0,π],向量的夹角为锐角与向量的数量积大于0不等价.
[针对练2] 已知向量a=(-2,-1),b=(λ,1),若a与b的夹角为钝角,则λ的取值范围是________.
解析:依题意,当a与b的夹角为钝角时,a·b=-2λ-1<0,解得λ>-.而当a与b共线时,有-2×1=-λ,解得λ=2,即当λ=2时,a=-b,a与b反向共线,此时a与b的夹角为π,不是钝角,因此,当a与b的夹角为钝角时,λ的取值范围是∪(2,+∞).
答案:∪(2,+∞)
A组——10+7提速练
一、选择题
1.已知平面向量a=(3,4),b=,若a∥b,则实数x为( )
A.- B.
C. D.-
解析:选C ∵a∥b,∴3×=4x,解得x=,故选C.
2.(2019届高三·杭州六校联考)已知向量a和b的夹角为120°,且|a|=2,|b|=5,则(2a-b)·a=( )
A.9 B.10
C.12 D.13
解析:选D ∵向量a和b的夹角为120°,
且|a|=2,|b|=5,
∴a·b=2×5×cos 120°=-5,
∴(2a-b)·a=2a2-a·b=2×4+5=13,
故选D.
3.(2018·全国卷Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=( )
A.- B.-
C.+ D.+
解析:选A 作出示意图如图所示.=+=+=×(+)+(-)=-.故选A.
4.设向量a=(-2,1),a+b=(m,-3),c=(3,1),若(a+b)⊥c,则cos〈a,b〉=( )
A.- B.
C. D.-
解析:选D 由(a+b)⊥c可得,m×3+(-3)×1=0,解得m=1.所以a+b=(1,-3),故b=(a+b)-a=(3,-4).
所以cos〈a,b〉===-,故选D.
5.P是△ABC所在平面上一点,满足|-|-|+-2|=0,则△ABC的形状是( )
A.等腰直角三角形 B.直角三角形
C.等腰三角形 D.等边三角形
解析:选B ∵P是△ABC所在平面上一点,且|-|-|+-2|=0,
∴||-|(-)+(-)|=0,
即||=|+|,
∴|-|=|+|,
两边平方并化简得·=0,
∴⊥,∴∠A=90°,
则△ABC是直角三角形.
6.(2018·浙江二模)如图,设A,B是半径为2的圆O上的两个动点,点C为AO中点,则·的取值范围是( )
A.[-1,3] B.[1,3]
C.[-3,-1] D.[-3,1]
解析:选A 建立平面直角坐标系如图所示,
可得O(0,0),A(-2,0),C(-1,0),设B(2cos θ,2sin θ).θ∈[0,2π).
则·=(1,0)·(2cos θ+1,2sin θ)=2cos θ+1∈[-1,3].
故选A.
7.(2019届高三·浙江名校联考)已知在△ABC中,AB=4,AC=2,AC⊥BC,D为AB的中点,点P满足=+,则·(+)的最小值为( )
A.-2 B.-
C.- D.-
解析:选C 由=+知点P在直线CD上,以点C为坐标原点,CB所在直线为x轴,CA所在直线为y轴建立如图所示的平面直角坐标系,则C(0,0),A(0,2),B(2,0),D(,1),∴直线CD的方程为y=x,设P,则=,=,=,∴+=,
∴·(+)=-x(2-2x)+x2-x=x2-x=2-,
∴当x=时,·(+)取得最小值-.
8.已知单位向量a,b,c是共面向量,a·b=,a·c=b·c<0,记m=|λa-b|+|λa-c|(λ∈R),则m2的最小值是( )
A.4+ B.2+
C.2+ D.4+
解析:选B 由a·c=b·c,可得c·(a-b)=0,故c与a-b垂直,又a·c=b·c<0,记=a,=b,=c,以O为坐标原点,的方向为x轴正方向建立如图所示的平面直角坐标系,设=λa,则|λa-b|+|λa-c|=||+||≥|b-c|=||,由图可知最小值为BC,易知∠OBC=∠BCO=15°,所以∠BOC=150°,在△BOC中,BC2=BO2+OC2-2BO·OC·cos∠BOC=2+.所以m2的最小值是2+.
9.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为( )
A.3 B.2
C. D.2
解析:选A 以A为坐标原点,AB,AD所在直线分别为x轴,y轴建立如图所示的平面直角坐标系,则A(0,0),B(1,0),C(1,2),D(0,2),可得直线BD的方程为2x+y-2=0,点C到直线BD的距离为=,所以圆C:(x-1)2+(y-2)2=.
因为P在圆C上,所以P.
又=(1,0),=(0,2),=λ+μ=(λ,2μ),
所以
λ+μ=2+cos θ+sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=+2kπ-φ,k∈Z时,λ+μ取得最大值3.
10.如图,在四边形ABCD中,点E,F分别是边AD,BC的中点,设·=m,·=n.若AB=,EF=1,CD=,则( )
A.2m-n=1 B.2m-2n=1
C.m-2n=1 D.2n-2m=1
解析:选D ·=(+)·(-+)=-2+·-·+·=-2+·(-)+m=-2+·(++-)+m=·+m.又=++,=++,两式相加,再根据点E,F分别是边AD,BC的中点,化简得2=+,两边同时平方得4=2+3+2·,所以·=-,则·=,所以n=+m,即2n-2m=1,故选D.
二、填空题
11.(2018·龙岩模拟)已知向量a,b夹角为60°,且|a|=1,|2a-b|=2,则|b|=________.
解析:∵|2a-b|=2,∴4a2-4a·b+b2=12,
∴4×12-4×1×|b|cos 60°+|b|2=12,
即|b|2-2|b|-8=0,
解得|b|=4.
答案:4
12.(2019届高三·宁波效实模拟)如图,在平面四边形ABCD中,|AC|=3,|BD|=4,则(+)·(+)=________.
解析:∵在平面四边形ABCD中,|AC|=3,|BD|=4,
∴+=+++=+=-,
+=+++=+,
∴(+)·(+)=(-)(+)=2-2=9-16=-7.
答案:-7
13.设向量a,b满足|a+b|=2|a-b|,|a|=3,则|b|的最大值是________;最小值是________.
解析:由|a+b|=2|a-b|两边平方,得a2+2a·b+b2=4(a2-2a·b+b2),化简得到3a2+3b2=10a·b≤10|a||b|,|b|2-10|b|+9≤0,解得1≤|b|≤9.
答案:9 1
14.(2018·嘉兴期末)在Rt△ABC中,AB=AC=2,D为AB边上的点,且=2,则·=________;若=x+y,则xy=________.
解析:以A为坐标原点,,分别为x轴,y轴的正方向建立如图所示的平面直角坐标系,则A(0,0),B(2,0),C(0,2),D,所以·=·(0,-2)=4.由=x+y,得=x(0,-2)+y(2,-2),所以=2y,-2=-2x-2y,解得x=,y=,所以xy=.
答案:4
15.(2018·温州二模)若向量a,b满足(a+b)2-b2=|a|=3,且|b|≥2,则a·b=________,a在b方向上的投影的取值范围是________.
解析:向量a,b满足(a+b)2-b2=|a|=3,
∴a2+2a·b+b2-b2=3,
∴9+2a·b=3,∴a·b=-3;
则a在b方向上的投影为|a|cos θ==,
又|b|≥2,∴-≤<0,
∴a在b方向上的投影取值范围是.
答案:-3
16.(2018·温州适应性测试)已知向量a,b满足|a|=|b|=a·b=2,向量x=λa+(1-λ)b,向量y=ma+nb,其中λ,m,n∈R,且m>0,n>0.若(y-x)·(a+b)=6,则m2+n2的最小值为________.
解析:法一:依题意得,[ma+nb-λa-(1-λ)b]·(a+b)=6,所以[(m-λ)a+(n-1+λ)b]·(a+b)=6,
因为|a|=|b|=a·b=2,所以4(m-λ)+4(n-1+λ)+2[(m-λ)+(n-1+λ)]=6,
所以m+n-1=1,即m+n=2,
所以m2+n2=m2+(2-m)2=2m2-4m+4=2(m-1)2+2≥2,当且仅当m=1时取等号,
所以m2+n2的最小值为2.
法二:依题意得,[ma+nb-λa-(1-λ)b]·(a+b)=6,
即[(m-λ)a+(n-1+λ)b]·(a+b)=6,
因为|a|=|b|=a·b=2,所以4(m-λ)+4(n-1+λ)+2[(m-λ)+(n-1+λ)]=6,
所以m+n-1=1,即m+n=2,所以m2+n2=(m+n)2-2mn=4-2mn≥4-22=2,当且仅当m=n=1时取等号,所以m2+n2的最小值为2.
答案:2
17.已知在△ABC中,AC⊥AB,AB=3,AC=4.若点P在△ABC的内切圆上运动,则·(+)的最小值为________,此时点P的坐标为________.
解析:因为AC⊥AB,所以以A为坐标原点,以AB,AC所在的直线分别为x轴,y轴建立如图所示的平面直角坐标系,则A(0,0),B(3,0),C(0,4).由题意可知△ABC内切圆的圆心为D(1,1),半径为1.因为点P在△ABC的内切圆上运动,所以可设P(1+cos θ,1+sin θ)(0≤θ<2π).所以=(-1-cos θ,-1-sin θ),+=(1-2cos θ,2-2sin θ),所以·(+)=(-1-cos θ)(1-2cos θ)+(-1-sin θ)(2-2sin θ)=-1+cos θ+2cos2 θ-2+2sin2 θ=-1+cos θ≥-1-1=-2,当且仅当cos θ=-1,即P(0,1)时,·(+)取到最小值,且最小值为-2.
答案:-2 (0,1)
B组——能力小题保分练
1.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=2EF,则·的值为( )
A.- B.
C. D.
解析:选B 如图所示,=+.
又D,E分别为AB,BC的中点,且DE=2EF,所以=,=+=,
所以=+.
又=-,
则·=·(-)
=·-2+2-·
=2-2-·=||2-||2-×||×||×cos∠BAC.
又||=||=1,∠BAC=60°,
故·=--×1×1×=.
2.如图,在等腰梯形ABCD中,已知DC∥AB,∠ADC=120°,AB=4,CD=2,动点E和F分别在线段BC和DC上,且=,=λ,则·的最小值是( )
A.4+13 B.4-13
C.4+ D.4-
解析:选B 在等腰梯形ABCD中,AB=4,CD=2,∠ADC=120°,易得AD=BC=2.由动点E和F分别在线段BC和DC上得,所以<λ<1.所以·=(+)·(+)=·+·+·+·=||·||cos 120°+||·||-||·||+||·||cos 60°=4×2×+×2-4×(1-λ)×2+×(1-λ)×2×=-13+8λ+≥-13+2=4-13,当且仅当λ=时取等号.所以·的最小值是4-13.
3.(2018·台州一模)已知单位向量e1,e2,且e1·e2=-,若向量a满足(a-e1)·(a-e2)=,则|a|的取值范围为( )
A. B.
C. D.
解析:选B ∵单位向量e1,e2,且e1·e2=-,
∴〈e1,e2〉=120°,
∴|e1+e2|= =1.
若向量a满足(a-e1)·(a-e2)=,
则a2-a·(e1+e2)+e1·e2=,
∴|a|2-a·(e1+e2)=,
∴|a|2-|a|·cos〈a,e1+e2〉=,
即cos〈a,e1+e2〉=.
∵-1≤cos〈a,e1+e2〉≤1,
∴-1≤|a|-≤1,
解得-≤|a|≤+,
∴|a|的取值范围为.
4.(2017·丽水模拟)在△ABC和△AEF中,B是EF的中点,AB=EF=1,BC=6,CA=,若·+·=2,则与的夹角的余弦值等于________.
解析:由题意可得2=(-)2=2+2-2·=33+1-2·=36,∴·=-1.
由·+·=2,
可得·(+)+·(+)
=2+·+·+·
=1-·+(-1)+·
=·(-)
=·=2,
故有·=4.
再由·=1×6×cos〈,〉,
可得6×cos〈,〉=4,∴cos〈,〉=.
答案:
5.(2019届高三·镇海中学模拟)已知向量a,b的夹角为,|b|=2,对任意x∈R,有|b+xa|≥|a-b|,则|tb-a|+(t∈R)的最小值为________.
解析:向量a,b夹角为,|b|=2,对任意x∈R,有|b+xa|≥|a-b|,
两边平方整理可得x2a2+2xa·b-(a2-2a·b)≥0,
则Δ=4(a·b)2+4a2(a2-2a·b)≤0,
即有(a2-a·b)2≤0,即为a2=a·b,
则(a-b)⊥a,
由向量a,b夹角为,|b|=2,
由a2=a·b=|a|·|b|·cos,得|a|=1,
则|a-b|==,
画出=a,=b,建立平面直角坐标系,如图所示:
则A(1,0),B(0,),
∴a=(-1,0),b=(-1,);
∴|tb-a|+
=+
=+
=2
表示P(t,0)与M,N的距离之和的2倍,
当M,P,N共线时,取得最小值2|MN|.
即有2|MN|=2=.
答案:
6.已知定点A,B满足||=2,动点P与动点M满足||=4,=λ+(1-λ) (λ∈R),且||=||,则·的取值范围是________;若动点C也满足||=4,则·的取值范围是________.
解析:因为=λ+(1-λ) (λ∈R),λ+1-λ=1,所以根据三点共线知,点M在直线PB上,又||=||,记PA的中点为D,连接MD,如图,则MD⊥AP,·=·(+)=·+0=2,因为||=4,所以点P在以B为圆心,4为半径的圆上,则||∈[2,6],则·=2∈[2,18].
由于|MA|+|MB|=|MP|+|MB|=4,所以点M在以A,B为焦点,长轴的长为4的椭圆上,以直线AB为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系,则椭圆方程为+=1,点C在圆(x-1)2+y2=16上,A(-1,0),设M(2cos α,sin α),C(4cos β+1,4sin β),则=(4cos β+2,4sin β),=(2cos α+1,sin α),
·=(8cos α+4)cos β+4sin αsin β+4cos α+2
=sin(β+φ)+4cos α+2
=(4cos α+8)sin(β+φ)+4cos α+2,
最大值是(4cos α+8)+4cos α+2=8cos α+10≤18,
最小值是-(4cos α+8)+4cos α+2=-6,
所以·∈[-6,18].
答案:[2,18] [-6,18]
课件41张PPT。第一部分
二轮复习的主攻 平面向量、三角函数与解三角形题一专平面向量小题考法——一讲第考点(一) 平面向量的线性运算考点(二) 平面向量的数量积及应用必备知能·自主补缺
“课时跟踪检测”见“课时跟踪检测(一)”
(单击进入电子文档)
谢观看THANK YOU FOR WATCHING谢课时跟踪检测(一) 小题考法——平面向量
A组——10+7提速练
一、选择题
1.已知平面向量a=(3,4),b=,若a∥b,则实数x为( )
A.- B.
C. D.-
解析:选C ∵a∥b,∴3×=4x,解得x=,故选C.
2.(2019届高三·杭州六校联考)已知向量a和b的夹角为120°,且|a|=2,|b|=5,则(2a-b)·a=( )
A.9 B.10
C.12 D.13
解析:选D ∵向量a和b的夹角为120°,
且|a|=2,|b|=5,
∴a·b=2×5×cos 120°=-5,
∴(2a-b)·a=2a2-a·b=2×4+5=13,
故选D.
3.(2018·全国卷Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=( )
A.- B.-
C.+ D.+
解析:选A 作出示意图如图所示.=+=+=×(+)+(-)=-.故选A.
4.设向量a=(-2,1),a+b=(m,-3),c=(3,1),若(a+b)⊥c,则cos〈a,b〉=( )
A.- B.
C. D.-
解析:选D 由(a+b)⊥c可得,m×3+(-3)×1=0,解得m=1.所以a+b=(1,-3),故b=(a+b)-a=(3,-4).
所以cos〈a,b〉===-,故选D.
5.P是△ABC所在平面上一点,满足|-|-|+-2|=0,则△ABC的形状是( )
A.等腰直角三角形 B.直角三角形
C.等腰三角形 D.等边三角形
解析:选B ∵P是△ABC所在平面上一点,且|-|-|+-2|=0,
∴||-|(-)+(-)|=0,
即||=|+|,
∴|-|=|+|,
两边平方并化简得·=0,
∴⊥,∴∠A=90°,
则△ABC是直角三角形.
6.(2018·浙江二模)如图,设A,B是半径为2的圆O上的两个动点,点C为AO中点,则·的取值范围是( )
A.[-1,3] B.[1,3]
C.[-3,-1] D.[-3,1]
解析:选A 建立平面直角坐标系如图所示,
可得O(0,0),A(-2,0),C(-1,0),设B(2cos θ,2sin θ).θ∈[0,2π).
则·=(1,0)·(2cos θ+1,2sin θ)=2cos θ+1∈[-1,3].
故选A.
7.(2019届高三·浙江名校联考)已知在△ABC中,AB=4,AC=2,AC⊥BC,D为AB的中点,点P满足=+,则·(+)的最小值为( )
A.-2 B.-
C.- D.-
解析:选C 由=+知点P在直线CD上,以点C为坐标原点,CB所在直线为x轴,CA所在直线为y轴建立如图所示的平面直角坐标系,则C(0,0),A(0,2),B(2,0),D(,1),∴直线CD的方程为y=x,设P,则=,=,=,∴+=,∴·(+)=-x(2-2x)+x2-x=x2-x=2-,∴当x=时,·(+)取得最小值-.
8.已知单位向量a,b,c是共面向量,a·b=,a·c=b·c<0,记m=|λa-b|+|λa-c|(λ∈R),则m2的最小值是( )
A.4+ B.2+
C.2+ D.4+
解析:选B 由a·c=b·c,可得c·(a-b)=0,故c与a-b垂直,又a·c=b·c<0,记=a,=b,=c,以O为坐标原点,的方向为x轴正方向建立如图所示的平面直角坐标系,设=λa,则|λa-b|+|λa-c|=||+||≥|b-c|=||,由图可知最小值为BC,易知∠OBC=∠BCO=15°,所以∠BOC=150°,在△BOC中,BC2=BO2+OC2-2BO·OC·cos∠BOC=2+.所以m2的最小值是2+.
9.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为( )
A.3 B.2
C. D.2
解析:选A 以A为坐标原点,AB,AD所在直线分别为x轴,y轴建立如图所示的平面直角坐标系,则A(0,0),B(1,0),C(1,2),D(0,2),可得直线BD的方程为2x+y-2=0,点C到直线BD的距离为=,所以圆C:(x-1)2+(y-2)2=.
因为P在圆C上,所以P.
又=(1,0),=(0,2),=λ+μ=(λ,2μ),
所以
λ+μ=2+cos θ+sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=+2kπ-φ,k∈Z时,λ+μ取得最大值3.
10.如图,在四边形ABCD中,点E,F分别是边AD,BC的中点,设·=m,·=n.若AB=,EF=1,CD=,则( )
A.2m-n=1 B.2m-2n=1
C.m-2n=1 D.2n-2m=1
解析:选D ·=(+)·(-+)=-2+·-·+·=-2+·(-)+m=-2+·(++-)+m=·+m.又=++,=++,两式相加,再根据点E,F分别是边AD,BC的中点,化简得2=+,两边同时平方得4=2+3+2·,所以·=-,则·=,所以n=+m,即2n-2m=1,故选D.
二、填空题
11.(2018·龙岩模拟)已知向量a,b夹角为60°,且|a|=1,|2a-b|=2,则|b|=________.
解析:∵|2a-b|=2,∴4a2-4a·b+b2=12,
∴4×12-4×1×|b|cos 60°+|b|2=12,
即|b|2-2|b|-8=0,
解得|b|=4.
答案:4
12.(2019届高三·宁波效实模拟)如图,在平面四边形ABCD中,|AC|=3,|BD|=4,则(+)·(+)=________.
解析:∵在平面四边形ABCD中,|AC|=3,|BD|=4,
∴+=+++=+=-,
+=+++=+,
∴(+)·(+)=(-)(+)=2-2=9-16=-7.
答案:-7
13.设向量a,b满足|a+b|=2|a-b|,|a|=3,则|b|的最大值是________;最小值是________.
解析:由|a+b|=2|a-b|两边平方,得a2+2a·b+b2=4(a2-2a·b+b2),化简得到3a2+3b2=10a·b≤10|a||b|,|b|2-10|b|+9≤0,解得1≤|b|≤9.
答案:9 1
14.(2018·嘉兴期末)在Rt△ABC中,AB=AC=2,D为AB边上的点,且=2,则·=________;若=x+y,则xy=________.
解析:以A为坐标原点,,分别为x轴,y轴的正方向建立如图所示的平面直角坐标系,则A(0,0),B(2,0),C(0,2),D,所以·=·(0,-2)=4.由=x+y,得=x(0,-2)+y(2,-2),所以=2y,-2=-2x-2y,解得x=,y=,所以xy=.
答案:4
15.(2018·温州二模)若向量a,b满足(a+b)2-b2=|a|=3,且|b|≥2,则a·b=________,a在b方向上的投影的取值范围是________.
解析:向量a,b满足(a+b)2-b2=|a|=3,
∴a2+2a·b+b2-b2=3,
∴9+2a·b=3,∴a·b=-3;
则a在b方向上的投影为|a|cos θ==,
又|b|≥2,∴-≤<0,
∴a在b方向上的投影取值范围是.
答案:-3
16.(2018·温州适应性测试)已知向量a,b满足|a|=|b|=a·b=2,向量x=λa+(1-λ)b,向量y=ma+nb,其中λ,m,n∈R,且m>0,n>0.若(y-x)·(a+b)=6,则m2+n2的最小值为________.
解析:法一:依题意得,[ma+nb-λa-(1-λ)b]·(a+b)=6,所以[(m-λ)a+(n-1+λ)b]·(a+b)=6,因为|a|=|b|=a·b=2,所以4(m-λ)+4(n-1+λ)+2[(m-λ)+(n-1+λ)]=6,所以m+n-1=1,即m+n=2,所以m2+n2=m2+(2-m)2=2m2-4m+4=2(m-1)2+2≥2,当且仅当m=1时取等号,所以m2+n2的最小值为2.
法二:依题意得,[ma+nb-λa-(1-λ)b]·(a+b)=6,
即[(m-λ)a+(n-1+λ)b]·(a+b)=6,
因为|a|=|b|=a·b=2,所以4(m-λ)+4(n-1+λ)+2[(m-λ)+(n-1+λ)]=6,
所以m+n-1=1,即m+n=2,所以m2+n2=(m+n)2-2mn=4-2mn≥4-22=2,当且仅当m=n=1时取等号,所以m2+n2的最小值为2.
答案:2
17.已知在△ABC中,AC⊥AB,AB=3,AC=4.若点P在△ABC的内切圆上运动,则·(+)的最小值为________,此时点P的坐标为________.
解析:因为AC⊥AB,所以以A为坐标原点,以AB,AC所在的直线分别为x轴,y轴建立如图所示的平面直角坐标系,则A(0,0),B(3,0),C(0,4).由题意可知△ABC内切圆的圆心为D(1,1),半径为1.因为点P在△ABC的内切圆上运动,所以可设P(1+cos θ,1+sin θ)(0≤θ<2π).所以=(-1-cos θ,-1-sin θ),+=(1-2cos θ,2-2sin θ),所以·(+)=(-1-cos θ)(1-2cos θ)+(-1-sin θ)(2-2sin θ)=-1+cos θ+2cos2 θ-2+2sin2 θ=-1+cos θ≥-1-1=-2,当且仅当cos θ=-1,即P(0,1)时,·(+)取到最小值,且最小值为-2.
答案:-2 (0,1)
B组——能力小题保分练
1.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=2EF,则·的值为( )
A.- B.
C. D.
解析:选B 如图所示,=+.
又D,E分别为AB,BC的中点,且DE=2EF,所以=,=+=,
所以=+.
又=-,
则·=·(-)
=·-2+2-·
=2-2-·=||2-||2-×||×||×cos∠BAC.
又||=||=1,∠BAC=60°,
故·=--×1×1×=.
2.如图,在等腰梯形ABCD中,已知DC∥AB,∠ADC=120°,AB=4,CD=2,动点E和F分别在线段BC和DC上,且=,=λ,则·的最小值是( )
A.4+13 B.4-13
C.4+ D.4-
解析:选B 在等腰梯形ABCD中,AB=4,CD=2,∠ADC=120°,易得AD=BC=2.由动点E和F分别在线段BC和DC上得,所以<λ<1.所以·=(+)·(+)=·+·+·+·=||·||cos 120°+||·||-||·||+||·||cos 60°=4×2×+×2-4×(1-λ)×2+×(1-λ)×2×=-13+8λ+≥-13+2=4-13,当且仅当λ=时取等号.所以·的最小值是4-13.
3.(2018·台州一模)已知单位向量e1,e2,且e1·e2=-,若向量a满足(a-e1)·(a-e2)=,则|a|的取值范围为( )
A. B.
C. D.
解析:选B ∵单位向量e1,e2,且e1·e2=-,
∴〈e1,e2〉=120°,
∴|e1+e2|= =1.
若向量a满足(a-e1)·(a-e2)=,
则a2-a·(e1+e2)+e1·e2=,
∴|a|2-a·(e1+e2)=,
∴|a|2-|a|·cos〈a,e1+e2〉=,
即cos〈a,e1+e2〉=.
∵-1≤cos〈a,e1+e2〉≤1,
∴-1≤|a|-≤1,
解得-≤|a|≤+,
∴|a|的取值范围为.
4.(2017·丽水模拟)在△ABC和△AEF中,B是EF的中点,AB=EF=1,BC=6,CA=,若·+·=2,则与的夹角的余弦值等于________.
解析:由题意可得2=(-)2=2+2-2·=33+1-2·=36,∴·=-1.
由·+·=2,
可得·(+)+·(+)
=2+·+·+·
=1-·+(-1)+·
=·(-)
=·=2,
故有·=4.
再由·=1×6×cos〈,〉,
可得6×cos〈,〉=4,∴cos〈,〉=.
答案:
5.(2019届高三·镇海中学模拟)已知向量a,b的夹角为,|b|=2,对任意x∈R,有
|b+xa|≥|a-b|,则|tb-a|+(t∈R)的最小值为________.
解析:向量a,b夹角为,|b|=2,对任意x∈R,有|b+xa|≥|a-b|,
两边平方整理可得x2a2+2xa·b-(a2-2a·b)≥0,
则Δ=4(a·b)2+4a2(a2-2a·b)≤0,
即有(a2-a·b)2≤0,即为a2=a·b,
则(a-b)⊥a,
由向量a,b夹角为,|b|=2,
由a2=a·b=|a|·|b|·cos,得|a|=1,
则|a-b|==,
画出=a,=b,建立平面直角坐标系,如图所示:
则A(1,0),B(0,),
∴a=(-1,0),b=(-1,);
∴|tb-a|+
=+
=+
=2
表示P(t,0)与M,N的距离之和的2倍,
当M,P,N共线时,取得最小值2|MN|.
即有2|MN|=2=.
答案:
6.已知定点A,B满足||=2,动点P与动点M满足||=4,=λ+(1-λ) (λ∈R),且||=||,则·的取值范围是________;若动点C也满足||=4,则·的取值范围是________.
解析:因为=λ+(1-λ) (λ∈R),λ+1-λ=1,所以根据三点共线知,点M在直线PB上,又||=||,记PA的中点为D,连接MD,如图,则MD⊥AP,·=·(+)=·+0=2,因为||=4,所以点P在以B为圆心,4为半径的圆上,则||∈[2,6],则·=2∈[2,18].
由于|MA|+|MB|=|MP|+|MB|=4,所以点M在以A,B为焦点,长轴的长为4的椭圆上,以直线AB为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系,则椭圆方程为+=1,点C在圆(x-1)2+y2=16上,A(-1,0),设M(2cos α,sin α),C(4cos β+1,4sin β),则=(4cos β+2,4sin β),=(2cos α+1,sin α),
·=(8cos α+4)cos β+4sin αsin β+4cos α+2
=sin(β+φ)+4cos α+2
=(4cos α+8)sin(β+φ)+4cos α+2,
最大值是(4cos α+8)+4cos α+2=8cos α+10≤18,
最小值是-(4cos α+8)+4cos α+2=-6,
所以·∈[-6,18].
答案:[2,18] [-6,18]