第二讲 小题考法——圆锥曲线的方程与性质
考点(一)
圆锥曲线的定义与标准方程
主要考查圆锥曲线的定义及其应用、标准方程的求法.
[典例感悟]
[典例] (1)已知双曲线-y2=1的左、右焦点分别为F1,F2,点P在双曲线上,且满足|PF1|+|PF2|=2,则△PF1F2的面积为( )
A.1 B.
C. D.
(2)已知椭圆的中心在原点,离心率e=,且它的一个焦点与抛物线y2=-4x的焦点重合,则此椭圆方程为( )
A.+=1 B.+=1
C.+y2=1 D.+y2=1
[解析] (1)在双曲线-y2=1中,a=,b=1,c=2.不妨设P点在双曲线的右支上,则有|PF1|-|PF2|=2a=2,又|PF1|+|PF2|=2,∴|PF1|=+,|PF2|=-.又|F1F2|=2c=4,而|PF1|2+|PF2|2=|F1F2|2,∴PF1⊥PF2,∴S△PF1F2=×|PF1|×|PF2|=×(+)×(-)=1.故选A.
(2)由题可知椭圆的焦点在x轴上,所以设椭圆的标准方程为+=1(a>b>0),而抛物线y2=-4x的焦点为(-1,0),所以c=1,又离心率e==,解得a=2,b2=a2-c2=3,所以椭圆方程为+=1.故选A.
[答案] (1)A (2)A
[方法技巧]
1.圆锥曲线的定义
(1)椭圆:|MF1|+|MF2|=2a(2a>|F1F2|);
(2)双曲线:||MF1|-|MF2||=2a(2a<|F1F2|);
(3)抛物线:|MF|=d(d为M点到准线的距离).
[注意] 应用圆锥曲线定义解题时,易忽视定义中隐含条件导致错误.
2.求解圆锥曲线标准方程的思路方法
(1)定型,即指定类型,也就是确定圆锥曲线的类型、焦点位置,从而设出标准方程.
(2)计算,即利用待定系数法求出方程中的a2,b2或p.另外,当焦点位置无法确定时,抛物线常设为y2=2px或x2=2py(p≠0),椭圆常设为mx2+ny2=1(m>0,n>0),双曲线常设为mx2-ny2=1(mn>0).
[演练冲关]
1.已知双曲线-=1(a>0,b>0)的焦距为4,渐近线方程为2x±y=0,则双曲线的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
解析:选A 易知双曲线-=1(a>0,b>0)的焦点在x轴上,所以由渐近线方程为2x±y=0,得=2,因为双曲线的焦距为4,所以c=2.结合c2=a2+b2,可得a=2,b=4,所以双曲线的方程为-=1.
2.(2018·杭二中高三期中)过双曲线C:-=1(a>0,b>0)的右焦点F的直线l:y=x-4与双曲线C只有一个公共点,则双曲线C的焦距为________,C的离心率为________.
解析:双曲线C:-=1(a>0,b>0)的渐近线方程为y=±x,因为过双曲线C:-=1(a>0,b>0)的右焦点F的直线l:y=x-4与双曲线C只有一个公共点,所以又因为a2+b2=c2,所以a=2,b=2,c=4,所以2c=8,e==2.
答案:8 2
3.已知抛物线x2=4y的焦点为F,准线为l,P为抛物线上一点,过P作PA⊥l于点A,当∠AFO=30°(O为坐标原点)时,|PF|=________.
解析:法一:令l与y轴的交点为B,在Rt△ABF中,∠AFB=30°,|BF|=2,所以|AB|=.设P(x0,y0),则x0=±,代入x2=4y中,得y0=,所以|PF|=|PA|=y0+1=.
法二:如图所示,∠AFO=30°,
∴∠PAF=30°,
又|PA|=|PF|,
∴△APF为顶角∠APF=120°的等腰三角形,
而|AF|==,
∴|PF|==.
答案:
考点(二)
圆锥曲线的几何性质
主要考查椭圆、双曲线的离心率的计算、双曲线渐近线的应用以及抛物线的有关性质.
[典例感悟]
[典例] (1)(2018·浙江名师预测卷)设抛物线C:y2=2px(p>0)的焦点为F,点M在抛物线C上,|MF|=5,若以MF为直径的圆过点(0,2),则抛物线C的方程为( )
A.y2=4x或y2=8x B.y2=2x或y2=8x
C.y2=4x或y2=16x D.y2=2x或y2=16x
(2)(2017·全国卷Ⅰ)已知双曲线C:-=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若∠MAN=60°,则C的离心率为________.
[解析] (1)因为抛物线C的方程为y2=2px(p>0),
所以焦点F.
设M(x,y),由抛物线的性质可得|MF|=x+=5,
所以x=5-.
因为圆心是MF的中点,所以根据中点坐标公式可得圆心横坐标为,又由已知可得圆的半径也为,故可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则点M的纵坐标为4,所以M.将点M的坐标代入抛物线方程,得p2-10p+16=0,所以p=2或p=8,所以抛物线C的方程为y2=4x或y2=16x,故选C.
(2)双曲线的右顶点为A(a,0),一条渐近线的方程为y=x,即bx-ay=0,则圆心A到此渐近线的距离d==.又因为∠MAN=60°,圆的半径为b,所以b·sin 60°=,即=,所以e==.
[答案] (1)C (2)
[方法技巧]
1.椭圆、双曲线的离心率(离心率范围)的求法
求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a,b,c的等量关系或不等关系,然后把b用a,c代换,求的值.
2.双曲线的渐近线的求法及用法
(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得.
(2)用法:①可得或的值;②利用渐近线方程设所求双曲线的方程.
[演练冲关]
1.已知双曲线C:-=1(a>0,b>0)的两条渐近线的夹角为60°,则双曲线C的离心率为( )
A. B.
C.或 D.或2
解析:选D ∵两条渐近线的夹角为60°,且两条渐近线关于坐标轴对称,∴=tan 30°=或=tan 60°=.
由=,得==e2-1=,∴e=(舍负);由=,得==e2-1=3,∴e=2(舍负).故选D.
2.(2017·全国卷Ⅰ)设A,B是椭圆C:+=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是( )
A.(0,1]∪[9,+∞) B.(0, ]∪[9,+∞)
C.(0,1]∪[4,+∞) D.(0, ]∪[4,+∞)
解析:选A 当0<m<3时,焦点在x轴上,要使C上存在点M满足∠AMB=120°,则≥tan 60°=,即≥,解得0<m≤1.当m>3时,焦点在y轴上,要使C上存在点M满足∠AMB=120°,则≥tan 60°=,即≥,解得m≥9.故m的取值范围为(0,1]∪[9,+∞).
3.如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为点E,G,则|EG|的最小值为________.
解析:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),则y3=2y1,y4=y2,|EG|=y4-y3=y2-2y1.因为AB为抛物线y2=4x的焦点弦,所以y1y2=-4,所以|EG|=y2-2×=y2+≥2=4,当且仅当y2=,即y2=4时取等号,所以|EG|的最小值为4.
答案:4
考点(三)
圆锥曲线与圆、直线的综合问题
主要考查直线与圆锥曲线的位置关系以及圆锥曲线与圆相结合的问题.
[典例感悟]
[典例] (1)已知直线y=kx+t与圆x2+(y+1)2=1相切且与抛物线C:x2=4y交于不同的两点M,N,则实数t的取值范围是( )
A.(-∞,-3)∪(0,+∞)
B.(-∞,-2)∪(0,+∞)
C.(-3,0)
D.(-2,0)
(2)已知双曲线C:mx2+ny2=1(mn<0)的一条渐近线与圆x2+y2-6x-2y+9=0相切,则C的离心率为( )
A. B.
C.或 D.或
[解析] (1)因为直线与圆相切,所以=1,即k2=t2+2t.将直线方程代入抛物线方程并整理得x2-4kx-4t=0,于是Δ=16k2+16t=16(t2+2t)+16t>0,解得t>0或t<-3.故选A.
(2)圆x2+y2-6x-2y+9=0的标准方程为(x-3)2+(y-1)2=1,则圆心为M(3,1),半径r=1.当m<0,n>0时,由mx2+ny2=1得-=1,则双曲线的焦点在y轴上,不妨设双曲线与圆相切的渐近线方程为y=x,即ax-by=0,则圆心到直线的距离d==1,即|3a-b|=c,平方得9a2-6ab+b2=c2=a2+b2,即8a2-6ab=0,则b=a,平方得b2=a2=c2-a2,即c2=a2,则c=a,离心率e==;当m>0,n<0时,同理可得e=,故选D.
[答案] (1)A (2)D
[方法技巧]
处理圆锥曲线与圆相结合问题的注意点
(1)注意圆心、半径和平面几何知识的应用,如直径所对的圆周角为直角,构成了垂直关系;弦心距、半径、弦长的一半构成直角三角形等.
(2)注意圆与特殊线的位置关系,如圆的直径与椭圆长轴(短轴),与双曲线的实轴(虚轴)的关系;圆与过定点的直线、双曲线的渐近线、抛物线的准线的位置关系等.
[演练冲关]
1.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0),P是双曲线C右支上一点,且|PF2|=|F1F2|,若直线PF1与圆x2+y2=a2相切,则双曲线的离心率为( )
A. B.
C.2 D.3
解析:选B 取线段PF1的中点为A,连接AF2,又|PF2|=|F1F2|,则AF2⊥PF1,∵直线PF1与圆x2+y2=a2相切,∴|AF2|=2a,∵|PF2|=|F1F2|=2c,∴|PF1|=2a+2c,∴|PA|=·|PF1|=a+c,则在Rt△APF2中,4c2=(a+c)2+4a2,化简得(3c-5a)(a+c)=0,则双曲线的离心率为.
2.已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,则直线OM与直线l的斜率之积为( )
A.-9 B.-
C.- D.-3
解析:选A 设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).将y=kx+b代入9x2+y2=m2,得(k2+9)x2+2kbx+b2-m2=0,故xM==-,yM=kxM+b=,故直线OM的斜率kOM==-,所以kOM·k=-9,即直线OM与直线l的斜率之积为-9.
(一) 主干知识要记牢
圆锥曲线的定义、标准方程和性质
名称
椭圆
双曲线
抛物线
定义
|PF1|+|PF2|=2a(2a>|F1F2|)
||PF1|-|PF2||=2a(2a<|F1F2|)
|PF|=|PM|,点F不在直线l上,PM⊥l于M
标准方程
+=1(a>b>0)
-=1(a>0,b>0)
y2=2px(p>0)
图形
几何性质
轴
长轴长2a,短轴长2b
实轴长2a,虚轴长2b
离心率
e== (0
e== (e>1)
e=1
渐近线
y=±x
(二) 二级结论要用好
1.椭圆焦点三角形的3个规律
设椭圆方程是+=1(a>b>0),焦点F1(-c,0),F2(c,0),点P的坐标是(x0,y0).
(1)三角形的三个边长是|PF1|=a+ex0,|PF2|=a-ex0,|F1F2|=2c,e为椭圆的离心率.
(2)如果△PF1F2中∠F1PF2=α,则这个三角形的面积S△PF1F2=c|y0|=b2tan .
(3)椭圆的离心率e=.
2.双曲线焦点三角形的2个结论
P(x0,y0)为双曲线-=1(a>0,b>0)上的点,△PF1F2为焦点三角形.
(1)面积公式
S△PF1F2=c|y0|=r1r2sin θ=(其中|PF1|=r1,|PF2|=r2,∠F1PF2=θ).
(2)焦半径
若P在右支上,|PF1|=ex0+a,|PF2|=ex0-a;
若P在左支上,|PF1|=-ex0-a,|PF2|=-ex0+a.
3.抛物线y2=2px(p>0)焦点弦AB的4个结论
(1)xA·xB=;
(2)yA·yB=-p2;
(3)|AB|=(α是直线AB的倾斜角);
(4)|AB|=xA+xB+p.
4.圆锥曲线的通径
(1)椭圆通径长为;
(2)双曲线通径长为;
(3)抛物线通径长为2p.
5.圆锥曲线中的最值
(1)椭圆上两点间的最大距离为2a(长轴长).
(2)双曲线上两点间的最小距离为2a(实轴长).
(3)椭圆焦半径的取值范围为[a-c,a+c],a-c与a+c分别表示椭圆焦点到椭圆上的点的最小距离与最大距离.
(4)抛物线上的点中顶点到抛物线准线的距离最短.
(三) 易错易混要明了
1.利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.
[针对练1] △ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是________.
解析:如图,设内切圆的圆心为P,过点P作AC,BC的垂线PD,PF,垂足分别为D,F,则|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,∴|CA|-|CB|=|AD|-|BF|=6.
根据双曲线定义,所求轨迹是以A,B为焦点,实轴长为6的双曲线的右支,方程为-=1(x>3).
答案:-=1(x>3)
2.解决椭圆、双曲线、抛物线问题时,要注意其焦点的位置.
[针对练2] 若椭圆+=1的离心率为,则k的值为________.
解析:当焦点在x轴上时,a2=8+k,b2=9,e2====,解得k=4.
当焦点在y轴上时,a2=9,b2=8+k,e2====,解得k=-.
答案:4或-
3.直线与圆锥曲线相交的必要条件是它们构成的方程组有实数解,消元后得到的方程中要注意:二次项的系数是否为零,判别式Δ≥0的限制.尤其是在应用根与系数的关系解决问题时,必须先有“判别式Δ≥0”;在解决交点、弦长、中点、斜率、对称或存在性问题时都应在“Δ>0”下进行.
A组——10+7提速练
一、选择题
1.(2018·浙江高考)双曲线-y2=1的焦点坐标是( )
A.(-,0),(,0) B.(-2,0),(2,0)
C.(0,-),(0,) D.(0,-2),(0,2)
解析:选B ∵双曲线方程为-y2=1,
∴a2=3,b2=1,且双曲线的焦点在x轴上,
∴c===2,
即得该双曲线的焦点坐标为(-2,0),(2,0).
2.双曲线C:-=1(a>0,b>0)的离心率e=,则它的渐近线方程为( )
A.y=±x B.y=±x
C.y=±x D.y=±x
解析:选A 由双曲线C:-=1(a>0,b>0)的离心率e=,可得=,∴+1=,可得=,故双曲线的渐近线方程为y=±x.
3.(2017·全国卷Ⅲ)已知椭圆C:+=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )
A. B.
C. D.
解析:选A 以线段A1A2为直径的圆的方程为x2+y2=a2,由圆心到直线bx-ay+2ab=0的距离d==a,得a2=3b2,所以C的离心率e= =.
4.(2018·温州适应性测试)已知双曲线-=1(a>0,b>0)的离心率e∈(1,2],则其经过第一、三象限的渐近线的倾斜角的取值范围是( )
A. B.
C. D.
解析:选C 因为双曲线-=1(a>0,b>0)的离心率e∈(1,2],所以1<≤2,所以1<≤4,又c2=a2+b2,所以0<≤3,所以≥,所以≥.
因为-=1(a>0,b>0)经过第一、三象限的渐近线的方程为y=x,设其倾斜角为α,则tan α=≥,又α∈,所以α∈,故选C.
5.(2017·全国卷Ⅱ)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为( )
A. B.2
C.2 D.3
解析:选C 由题意,得F(1,0),
则直线FM的方程是y=(x-1).
由得x=或x=3.
由M在x轴的上方,得M(3,2),
由MN⊥l,得|MN|=|MF|=3+1=4.
又∠NMF等于直线FM的倾斜角,即∠NMF=60°,
因此△MNF是边长为4的等边三角形,
所以点M到直线NF的距离为4×=2.
6.已知F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,若椭圆C上存在点P使∠F1PF2为钝角,则椭圆C的离心率的取值范围是( )
A. B.
C. D.
解析:选A 法一:设P(x0,y0),由题意知|x0|x+y,即c2>(x+y)min,又y=b2-x,0≤xb2,又b2=a2-c2,所以e2=>,解得e>,又0法二:椭圆上存在点P使∠F1PF2为钝角?以原点O为圆心,以c为半径的圆与椭圆有四个不同的交点?b,又07.已知抛物线C:y2=4x的焦点为F,准线为l.若射线y=2(x-1)(x≤1)与C,l分别交于P,Q两点,则=( )
A. B.2
C. D.5
解析:选C 由题意,知抛物线C:y2=4x的焦点F(1,0),设准线l:x=-1与x轴的交点为F1.过点P作直线l的垂线,垂足为P1(图略),由得点Q的坐标为(-1,-4),所以|FQ|=2.又|PF|=|PP1|,所以====,故选C.
8.(2018·沈阳模拟)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,点M与双曲线C的焦点不重合,点M关于F1,F2的对称点分别为A,B,线段MN的中点在双曲线的右支上,若|AN|-|BN|=12,则a=( )
A.3 B.4
C.5 D.6
解析:选A 如图,设MN的中点为P.
∵F1为MA的中点,F2为MB的中点,∴|AN|=2|PF1|,|BN|=2|PF2|,又|AN|-|BN|=12,∴|PF1|-|PF2|=6=2a,∴a=3.故选A.
9.设AB是椭圆的长轴,点C在椭圆上,且∠CBA=,若AB=4,BC=,则椭圆的两个焦点之间的距离为( )
A. B.
C. D.
解析:选A 不妨设椭圆的标准方程为+=1(a>b>0),如图,由题意知,2a=4,a=2,∵∠CBA=,BC=,∴点C的坐标为(-1,1),∵点C在椭圆上,∴+=1,∴b2=,
∴c2=a2-b2=4-=,c=,则椭圆的两个焦点之间的距离为2c=.
10.过双曲线-=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率e的取值范围为( )
A. B.
C. D.
解析:选B 将x=c代入-=1得y=±,不妨取A,B,所以|AB|=.
将x=c代入双曲线的渐近线方程y=±x,得y=±,不妨取C,D,所以|CD|=.
因为|AB|≥|CD|,所以≥×,即b≥c,则b2≥c2,即c2-a2≥c2,即c2≥a2,所以e2≥,所以e≥,故选B.
二、填空题
11.过抛物线y=x2的焦点F作一条倾斜角为30°的直线交抛物线于A,B两点,则|AB|=________.
解析:依题意,设点A(x1,y1),B(x2,y2),题中的抛物线x2=4y的焦点坐标是F(0,1),直线AB的方程为y=x+1,即x=(y-1).由消去x得3(y-1)2=4y,即3y2-10y+3=0,Δ=(-10)2-4×3×3>0,y1+y2=,则|AB|=|AF|+|BF|=(y1+1)+(y2+1)=y1+y2+2=.
答案:
12.(2018·浙江高考猜题卷)已知双曲线C:-=1(a>0,b>0)的离心率e=,若直线l:y=k(x-2 018)与双曲线C的右支有且仅有一个交点,则a-b=_______;k的取值范围是________.
解析:因为双曲线的离心率e=,所以=,从而可得a=b,即a-b=0,故双曲线的渐近线方程为x±y=0,其斜率为±1,易知直线l必过定点(2 018,0),且直线l:y=k(x-2 018)与双曲线C的右支有且仅有一个交点,所以由数形结合可知-1≤k≤1,即k的取值范围是[-1,1].
答案:0 [-1,1]
13.已知椭圆C:+y2=1的两焦点为F1,F2,点P(x0,y0)满足0<+y<1,则|PF1|+|PF2|的取值范围是________.
解析:由点P(x0,y0)满足0<+y<1,可知P(x0,y0)一定在椭圆内(不包括原点),因为a=,b=1,所以由椭圆的定义可知|PF1|+|PF2|<2a=2,又|PF1|+|PF2|≥|F1F2|=2,故|PF1|+|PF2|的取值范围是[2,2).
答案:[2,2)
14.已知点A(4,4)在抛物线y2=2px(p>0)上,F为抛物线的焦点,过A作该抛物线准线的垂线,垂足为E,则p=________,∠EAF的角平分线所在的直线方程为________.
解析:把A(4,4)代入抛物线方程,得p=2.由抛物线的性质得|AE|=|AF|,连接EF,则△EAF为等腰三角形.设EF的中点为B,则直线AB为∠EAF的角平分线所在的直线.由F(1,0),E(-1,4),得B(0,2),则kAB==,则直线AB的方程为y=x+2,故∠EAF的角平分线所在的直线方程为x-2y+4=0.
答案:2 x-2y+4=0
15.已知椭圆的方程为+=1,过椭圆中心的直线交椭圆于A,B两点,F2是椭圆的右焦点,则△ABF2的周长的最小值为________,△ABF2的面积的最大值为________.
解析:设F1是椭圆的左焦点.如图,连接AF1.由椭圆的对称性,结合椭圆的定义知|AF2|+|BF2|=2a=6,所以要使△ABF2的周长最小,必有|AB|=2b=4,所以△ABF2的周长的最小值为10.S△ABF2=S△AF1F2=×2c×|yA|=|yA|≤2,所以△ABF2面积的最大值为2.
答案:10 2
16.已知抛物线y2=2px(p>0)的焦点为F,△ABC的顶点都在抛物线上,且满足++=0,则++=________.
解析:设A(x1,y1),B(x2,y2),C(x3,y3),F,由+=-,得+=-,y1+y2+y3=0.因为kAB==,kAC==,kBC==,所以++=++==0.
答案:0
17.如图,已知F1,F2分别是双曲线x2-=1(b>0)的左、右焦点,过点F1的直线与圆x2+y2=1相切于点T,与双曲线的左、右两支分别交于A,B,若|F2B|=|AB|,则b的值是________.
解析:法一:因为|F2B|=|AB|,所以结合双曲线的定义,得|AF1|=|BF1|-|AB|=|BF1|-|BF2|=2,连接OT,在Rt△OTF1中,|OT|=1,|OF1|=c,|TF1|=b,所以cos∠F2F1A=,sin∠F2F1A=,所以A,将点A的坐标代入双曲线得-=1,化简得b6-4b5+5b4-4b3-4=0,得(b2-2b-2)(b4-2b3+3b2-2b+2)=0,而b4-2b3+3b2-2b+2=b2(b-1)2+b2+1+(b-1)2>0,故b2-2b-2=0,解得b=1±(负值舍去),即b=1+.
法二:因为|F2B|=|AB|,所以结合双曲线的定义,得|AF1|=|BF1|-|AB|=|BF1|-|BF2|=2,连接AF2,则|AF2|=2+|AF1|=4.连接OT,在Rt△OTF1中,|OT|=1,|OF1|=c,|TF1|=b,所以cos∠F2F1A=.在△AF1F2中,由余弦定理得,cos∠F2F1A==,所以c2-3=2b,又在双曲线中,c2=1+b2,所以b2-2b-2=0,解得b=1±(负值舍去),即b=1+.
答案:1+
B组——能力小题保分练
1.双曲线-=1(a,b>0)的离心率为,左、右焦点分别为F1,F2,P为双曲线右支上一点,∠F1PF2的角平分线为l,点F1关于l的对称点为Q,|F2Q|=2,则双曲线的方程为( )
A.-y2=1 B.x2-=1
C.x2-=1 D.-y2=1
解析:选B ∵∠F1PF2的角平分线为l,点F1关于l的对称点为Q,∴|PF1|=|PQ|,P,F2,Q三点共线,而|PF1|-|PF2|=2a,∴|PQ|-|PF2|=2a,即|F2Q|=2=2a,解得a=1.又e==,∴c=,∴b2=c2-a2=2,∴双曲线的方程为x2-=1.故选B.
2.(2018·浙江高考原创卷)已知椭圆C:+=1(a>b>0)的左焦点F1关于直线y=-c的对称点Q在椭圆上,则椭圆的离心率是( )
A.-1 B.
C.2- D.
解析:选C ∵左焦点F1关于直线y=-c的对称点为Q,∴|F1Q|=2c.
设椭圆的右焦点为F2,则|F1F2|=2c.
由椭圆定义知,|F2Q|=2a-|F1Q|=2a-2c.
在Rt△F1QF2中,|F1F2|2+|F1Q|2=|F2Q|2,
即(2c)2+(2c)2=(2a-2c)2,
∴c2+2ac-a2=0,故e2+2e-1=0,
∴e=2-(负值舍去).故选C.
3.过椭圆C:+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆C于另一点B,且点B在x轴上的射影恰好为右焦点F.若A. B.
C. D.
解析:选C 由题图可知,|AF|=a+c,|BF|=,于是k==.又4.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为________.
解析:抛物线C:y2=4x的焦点为F(1,0),
由题意可知l1,l2的斜率存在且不为0.
不妨设直线l1的斜率为k,
则l1:y=k(x-1),l2:y=-(x-1),
由消去y,得k2x2-(2k2+4)x+k2=0,
设A(x1,y1),B(x2,y2),
∴x1+x2==2+,
由抛物线的定义可知,
|AB|=x1+x2+2=2++2=4+.
同理得|DE|=4+4k2,
∴|AB|+|DE|=4++4+4k2=8+4≥8+8=16,当且仅当=k2,即k=±1时取等号,
故|AB|+|DE|的最小值为16.
答案:16
5.已知抛物线C:y2=4x的焦点为F,直线y=(x-1)与C交于A,B(A在x轴上方)两点.若=m,则m的值为________.
解析:由题意知F(1,0),由
解得
由A在x轴上方,知A(3,2),B,则=(-2,-2),=,因为=m,所以m=3.
答案:3
6.(2018·浙江高考原创卷)已知双曲线x2-=1(b>0)的右焦点为F,过点F作一条渐近线的垂线,垂足为M.若点M的纵坐标为,则双曲线的离心率是________.
解析:∵点M的纵坐标为,
∴点M在渐近线y=x上.
∵双曲线方程为x2-=1,
∴a=1,F(c,0),渐近线方程为y=±bx.
则|FM|=,
∵c2=a2+b2=1+b2,∴|FM|=b.
∵△OMF为直角三角形,
∴OM===a.
∴OM×FM=OF×yM,
即cyM=ab,∴c2y=b2.
∵yM=,∴b2=c2.
又∵c2=a2+b2,
∴a2=c2,∴e=.
答案:
课件37张PPT。圆锥曲线的方程与性质小题考法——二讲第考点(一) 圆锥曲线的定义与标准方程考点(二) 圆锥曲线的几何性质考点(三) 圆锥曲线与圆、直线的综合问题必备知能·自主补缺
“课时跟踪检测”见“课时跟踪检测(十四)”
(单击进入电子文档)
谢观看THANK YOU FOR WATCHING谢课时跟踪检测(十四) 小题考法——圆锥曲线的方程与性质
A组——10+7提速练
一、选择题
1.(2018·浙江高考)双曲线-y2=1的焦点坐标是( )
A.(-,0),(,0) B.(-2,0),(2,0)
C.(0,-),(0,) D.(0,-2),(0,2)
解析:选B ∵双曲线方程为-y2=1,
∴a2=3,b2=1,且双曲线的焦点在x轴上,
∴c===2,
即得该双曲线的焦点坐标为(-2,0),(2,0).
2.双曲线C:-=1(a>0,b>0)的离心率e=,则它的渐近线方程为( )
A.y=±x B.y=±x
C.y=±x D.y=±x
解析:选A 由双曲线C:-=1(a>0,b>0)的离心率e=,可得=,∴+1=,可得=,故双曲线的渐近线方程为y=±x.
3.(2017·全国卷Ⅲ)已知椭圆C:+=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )
A. B.
C. D.
解析:选A 以线段A1A2为直径的圆的方程为x2+y2=a2,由圆心到直线bx-ay+2ab=0的距离d==a,得a2=3b2,所以C的离心率e= =.
4.(2018·温州适应性测试)已知双曲线-=1(a>0,b>0)的离心率e∈(1,2],则其经过第一、三象限的渐近线的倾斜角的取值范围是( )
A. B.
C. D.
解析:选C 因为双曲线-=1(a>0,b>0)的离心率e∈(1,2],所以1<≤2,所以1<≤4,又c2=a2+b2,所以0<≤3,所以≥,所以≥.
因为-=1(a>0,b>0)经过第一、三象限的渐近线的方程为y=x,设其倾斜角为α,则tan α=≥,又α∈,所以α∈,故选C.
5.(2017·全国卷Ⅱ)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为( )
A. B.2
C.2 D.3
解析:选C 由题意,得F(1,0),
则直线FM的方程是y=(x-1).
由得x=或x=3.
由M在x轴的上方,得M(3,2),
由MN⊥l,得|MN|=|MF|=3+1=4.
又∠NMF等于直线FM的倾斜角,即∠NMF=60°,
因此△MNF是边长为4的等边三角形,
所以点M到直线NF的距离为4×=2.
6.已知F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,若椭圆C上存在点P使∠F1PF2为钝角,则椭圆C的离心率的取值范围是( )
A. B.
C. D.
解析:选A 法一:设P(x0,y0),由题意知|x0|x+y,即c2>(x+y)min,又y=b2-x,0≤xb2,又b2=a2-c2,所以e2=>,解得e>,又0法二:椭圆上存在点P使∠F1PF2为钝角?以原点O为圆心,以c为半径的圆与椭圆有四个不同的交点?b,又07.已知抛物线C:y2=4x的焦点为F,准线为l.若射线y=2(x-1)(x≤1)与C,l分别交于P,Q两点,则=( )
A. B.2
C. D.5
解析:选C 由题意,知抛物线C:y2=4x的焦点F(1,0),设准线l:x=-1与x轴的交点为F1.过点P作直线l的垂线,垂足为P1(图略),由得点Q的坐标为(-1,-4),所以|FQ|=2.又|PF|=|PP1|,所以====,故选C.
8.(2018·沈阳模拟)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,点M与双曲线C的焦点不重合,点M关于F1,F2的对称点分别为A,B,线段MN的中点在双曲线的右支上,若|AN|-|BN|=12,则a=( )
A.3 B.4
C.5 D.6
解析:选A 如图,设MN的中点为P.
∵F1为MA的中点,F2为MB的中点,∴|AN|=2|PF1|,|BN|=2|PF2|,又|AN|-|BN|=12,∴|PF1|-|PF2|=6=2a,∴a=3.故选A.
9.设AB是椭圆的长轴,点C在椭圆上,且∠CBA=,若AB=4,BC=,则椭圆的两个焦点之间的距离为( )
A. B.
C. D.
解析:选A 不妨设椭圆的标准方程为+=1(a>b>0),如图,由题意知,2a=4,a=2,∵∠CBA=,BC=,∴点C的坐标为(-1,1),∵点C在椭圆上,∴+=1,∴b2=,
∴c2=a2-b2=4-=,c=,则椭圆的两个焦点之间的距离为2c=.
10.过双曲线-=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率e的取值范围为( )
A. B.
C. D.
解析:选B 将x=c代入-=1得y=±,不妨取A,B,所以|AB|=.
将x=c代入双曲线的渐近线方程y=±x,得y=±,不妨取C,D,所以|CD|=.
因为|AB|≥|CD|,所以≥×,即b≥c,则b2≥c2,即c2-a2≥c2,即c2≥a2,所以e2≥,所以e≥,故选B.
二、填空题
11.过抛物线y=x2的焦点F作一条倾斜角为30°的直线交抛物线于A,B两点,则|AB|=________.
解析:依题意,设点A(x1,y1),B(x2,y2),题中的抛物线x2=4y的焦点坐标是F(0,1),直线AB的方程为y=x+1,即x=(y-1).由消去x得3(y-1)2=4y,即3y2-10y+3=0,Δ=(-10)2-4×3×3>0,y1+y2=,则|AB|=|AF|+|BF|=(y1+1)+(y2+1)=y1+y2+2=.
答案:
12.(2018·浙江高考猜题卷)已知双曲线C:-=1(a>0,b>0)的离心率e=,若直线l:y=k(x-2 018)与双曲线C的右支有且仅有一个交点,则a-b=_______;k的取值范围是________.
解析:因为双曲线的离心率e=,所以=,从而可得a=b,即a-b=0,故双曲线的渐近线方程为x±y=0,其斜率为±1,易知直线l必过定点(2 018,0),且直线l:y=k(x-2 018)与双曲线C的右支有且仅有一个交点,所以由数形结合可知-1≤k≤1,即k的取值范围是[-1,1].
答案:0 [-1,1]
13.已知椭圆C:+y2=1的两焦点为F1,F2,点P(x0,y0)满足0<+y<1,则|PF1|+|PF2|的取值范围是________.
解析:由点P(x0,y0)满足0<+y<1,可知P(x0,y0)一定在椭圆内(不包括原点),因为a=,b=1,所以由椭圆的定义可知|PF1|+|PF2|<2a=2,又|PF1|+|PF2|≥|F1F2|=2,故|PF1|+|PF2|的取值范围是[2,2).
答案:[2,2)
14.已知点A(4,4)在抛物线y2=2px(p>0)上,F为抛物线的焦点,过A作该抛物线准线的垂线,垂足为E,则p=________,∠EAF的角平分线所在的直线方程为________.
解析:把A(4,4)代入抛物线方程,得p=2.由抛物线的性质得|AE|=|AF|,连接EF,则△EAF为等腰三角形.设EF的中点为B,则直线AB为∠EAF的角平分线所在的直线.由F(1,0),E(-1,4),得B(0,2),则kAB==,则直线AB的方程为y=x+2,故∠EAF的角平分线所在的直线方程为x-2y+4=0.
答案:2 x-2y+4=0
15.已知椭圆的方程为+=1,过椭圆中心的直线交椭圆于A,B两点,F2是椭圆的右焦点,则△ABF2的周长的最小值为________,△ABF2的面积的最大值为________.
解析:设F1是椭圆的左焦点.如图,连接AF1.由椭圆的对称性,结合椭圆的定义知|AF2|+|BF2|=2a=6,所以要使△ABF2的周长最小,必有|AB|=2b=4,所以△ABF2的周长的最小值为10.S△ABF2=S△AF1F2=×2c×|yA|=|yA|≤2,所以△ABF2面积的最大值为2.
答案:10 2
16.已知抛物线y2=2px(p>0)的焦点为F,△ABC的顶点都在抛物线上,且满足++=0,则++=________.
解析:设A(x1,y1),B(x2,y2),C(x3,y3),F,由+=-,得+=-,y1+y2+y3=0.因为kAB==,kAC==,kBC==,所以++=++==0.
答案:0
17.如图,已知F1,F2分别是双曲线x2-=1(b>0)的左、右焦点,过点F1的直线与圆x2+y2=1相切于点T,与双曲线的左、右两支分别交于A,B,若|F2B|=|AB|,则b的值是________.
解析:法一:因为|F2B|=|AB|,所以结合双曲线的定义,得|AF1|=|BF1|-|AB|=|BF1|-|BF2|=2,连接OT,在Rt△OTF1中,|OT|=1,|OF1|=c,|TF1|=b,所以cos∠F2F1A=,sin∠F2F1A=,所以A,将点A的坐标代入双曲线得-=1,化简得b6-4b5+5b4-4b3-4=0,得(b2-2b-2)(b4-2b3+3b2-2b+2)=0,而b4-2b3+3b2-2b+2=b2(b-1)2+b2+1+(b-1)2>0,故b2-2b-2=0,解得b=1±(负值舍去),即b=1+.
法二:因为|F2B|=|AB|,所以结合双曲线的定义,得|AF1|=|BF1|-|AB|=|BF1|-|BF2|=2,连接AF2,则|AF2|=2+|AF1|=4.连接OT,在Rt△OTF1中,|OT|=1,|OF1|=c,|TF1|=b,所以cos∠F2F1A=.在△AF1F2中,由余弦定理得,cos∠F2F1A==,所以c2-3=2b,又在双曲线中,c2=1+b2,所以b2-2b-2=0,解得b=1±(负值舍去),即b=1+.
答案:1+
B组——能力小题保分练
1.双曲线-=1(a,b>0)的离心率为,左、右焦点分别为F1,F2,P为双曲线右支上一点,∠F1PF2的角平分线为l,点F1关于l的对称点为Q,|F2Q|=2,则双曲线的方程为( )
A.-y2=1 B.x2-=1
C.x2-=1 D.-y2=1
解析:选B ∵∠F1PF2的角平分线为l,点F1关于l的对称点为Q,∴|PF1|=|PQ|,P,F2,Q三点共线,而|PF1|-|PF2|=2a,∴|PQ|-|PF2|=2a,即|F2Q|=2=2a,解得a=1.又e==,∴c=,∴b2=c2-a2=2,∴双曲线的方程为x2-=1.故选B.
2.(2018·浙江高考原创卷)已知椭圆C:+=1(a>b>0)的左焦点F1关于直线y=-c的对称点Q在椭圆上,则椭圆的离心率是( )
A.-1 B.
C.2- D.
解析:选C ∵左焦点F1关于直线y=-c的对称点为Q,∴|F1Q|=2c.
设椭圆的右焦点为F2,则|F1F2|=2c.
由椭圆定义知,|F2Q|=2a-|F1Q|=2a-2c.
在Rt△F1QF2中,|F1F2|2+|F1Q|2=|F2Q|2,
即(2c)2+(2c)2=(2a-2c)2,
∴c2+2ac-a2=0,故e2+2e-1=0,
∴e=2-(负值舍去).故选C.
3.过椭圆C:+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆C于另一点B,且点B在x轴上的射影恰好为右焦点F.若A. B.
C. D.
解析:选C 由题图可知,|AF|=a+c,|BF|=,于是k==.又4.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为________.
解析:抛物线C:y2=4x的焦点为F(1,0),
由题意可知l1,l2的斜率存在且不为0.
不妨设直线l1的斜率为k,
则l1:y=k(x-1),l2:y=-(x-1),
由消去y,得k2x2-(2k2+4)x+k2=0,
设A(x1,y1),B(x2,y2),
∴x1+x2==2+,
由抛物线的定义可知,
|AB|=x1+x2+2=2++2=4+.
同理得|DE|=4+4k2,
∴|AB|+|DE|=4++4+4k2=8+4≥8+8=16,当且仅当=k2,即k=±1时取等号,
故|AB|+|DE|的最小值为16.
答案:16
5.已知抛物线C:y2=4x的焦点为F,直线y=(x-1)与C交于A,B(A在x轴上方)两点.若=m,则m的值为________.
解析:由题意知F(1,0),由
解得
由A在x轴上方,知A(3,2),B,则=(-2,-2),=,因为=m,所以m=3.
答案:3
6.(2018·浙江高考原创卷)已知双曲线x2-=1(b>0)的右焦点为F,过点F作一条渐近线的垂线,垂足为M.若点M的纵坐标为,则双曲线的离心率是________.
解析:∵点M的纵坐标为,
∴点M在渐近线y=x上.
∵双曲线方程为x2-=1,
∴a=1,F(c,0),渐近线方程为y=±bx.
则|FM|=,
∵c2=a2+b2=1+b2,∴|FM|=b.
∵△OMF为直角三角形,
∴OM===a.
∴OM×FM=OF×yM,
即cyM=ab,∴c2y=b2.
∵yM=,∴b2=c2.
又∵c2=a2+b2,
∴a2=c2,∴e=.
答案: