2019、2020年普通高等学校招生全国统一考试(江苏卷)2年数学试题合集 Word版含答案

文档属性

名称 2019、2020年普通高等学校招生全国统一考试(江苏卷)2年数学试题合集 Word版含答案
格式 zip
文件大小 1.7MB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2020-07-16 20:45:39

图片预览

文档简介

2019、2020年普通高等学校招生全国统一考试(江苏卷)
2年数学试题合集
2020年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
参考公式:
柱体的体积,其中是柱体的底面积,是柱体的高.
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.
1.已知集合,则


2.已知是虚数单位,则复数的实部是


3.已知一组数据的平均数为4,则的值是


4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是


5.如图是一个算法流程图,若输出的值为,则输入的值是


6.在平面直角坐标系xOy中,若双曲线的一条渐近线方程为,则该双曲线的离心率是


7.已知y=f(x)是奇函数,当x≥0时,,则的值是


8.已知=,则的值是


9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2
cm,高为2
cm,内孔半轻为0.5
cm,则此六角螺帽毛坯的体积是

cm.
10.将函数的图象向右平移个单位长度,则平移后的图象中与y轴最近的对称轴的方程是


11.设{an}是公差为d的等差数列,{bn}是公比为q的等比数列.已知数列{an+bn}的前n项和,则d+q的值是


12.已知,则的最小值是


13.在△ABC中,D在边BC上,延长AD到P,使得AP=9,若(m为常数),则CD的长度是


14.在平面直角坐标系xOy中,已知,A,B是圆C:上的两个动点,满足,则△PAB面积的最大值是


二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
15.(本小题满分14分)
在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.
(1)求证:EF∥平面AB1C1;
(2)求证:平面AB1C⊥平面ABB1.
16.(本小题满分14分)
在△ABC中,角A,B,C的对边分别为a,b,c,已知.
(1)求的值;
(2)在边BC上取一点D,使得,求的值.
17.(本小题满分14分)
某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,为铅垂线(在AB上).经测量,左侧曲线AO上任一点D到MN的距离(米)与D到的距离a(米)之间满足关系式;右侧曲线BO上任一点F到MN的距离(米)与F到的距离b(米)之间满足关系式.已知点B到的距离为40米.
(1)求桥AB的长度;
(2)计划在谷底两侧建造平行于的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点)..桥墩EF每米造价k(万元)、桥墩CD每米造价(万元)(k>0),问为多少米时,桥墩CD与EF的总造价最低?
18.(本小题满分16分)
在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.
(1)求的周长;
(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求的最小值;
(3)设点M在椭圆E上,记与的面积分别为S1,S2,若,求点M的坐标.
19.(本小题满分16分)
已知关于x的函数与在区间D上恒有.
(1)若,求h(x)的表达式;
(2)若,求k的取值范围;
(3)若求证:.
20.(本小题满分16分)
已知数列的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有成立,则称此数列为“λ~k”数列.
(1)若等差数列是“λ~1”数列,求λ的值;
(2)若数列是“”数列,且,求数列的通项公式;
(3)对于给定的λ,是否存在三个不同的数列为“λ~3”数列,且?若存在,求λ的取值范围;若不存在,说明理由.
数学Ⅰ试题参考答案
一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.
1.
2.3
3.2
4.
5.
6.
7.
8.
9.
10.
11.4
12.
13.或0
14.
二、解答题
15.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.
证明:因为分别是的中点,所以.
又平面,平面,
所以平面.
(2)因为平面,平面,
所以.
又,平面,平面,
所以平面.
又因为平面,所以平面平面.
16.本小题主要考查正弦定理、余弦定理、同角三角函数关系、两角和与差的三角函数等基础知识,考查运算求解能力.满分14分.
解:(1)在中,因为,
由余弦定理,得,
所以.
在中,由正弦定理,
得,
所以
(2)在中,因为,所以为钝角,
而,所以为锐角.
故则.
因为,所以,.
从而.
17.本小题主要考查函数的性质、用导数求最值、解方程等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分.
解:(1)设都与垂直,是相应垂足.
由条件知,当时,
则.
由得
所以(米).
(2)以为原点,为轴建立平面直角坐标系(如图所示).
设则
.
因为所以.
设则
所以
记桥墩和的总造价为,




所以当时,取得最小值.
答:(1)桥的长度为120米;
(2)当为20米时,桥墩和的总造价最低.
18.本小题主要考查直线方程、椭圆方程、椭圆的几何性质、直线与椭圆的位置关系、向量数量积等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分16分.
解:(1)椭圆的长轴长为,短轴长为,焦距为,
则.
所以的周长为.
(2)椭圆的右准线为.
设,
则,
在时取等号.
所以的最小值为.
(3)因为椭圆的左、右焦点分别为,点在椭圆上且在第一象限内,,
则.
所以直线
设,因为,所以点到直线距离等于点到直线距离的3倍.
由此得,
则或.
由得,此方程无解;
由得,所以或.
代入直线,对应分别得或.
因此点的坐标为或.
19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.
解:(1)由条件,得,
取,得,所以.
由,得,此式对一切恒成立,
所以,则,此时恒成立,
所以.
(2).
令,则令,得.
所以.则恒成立,
所以当且仅当时,恒成立.
另一方面,恒成立,即恒成立,
也即恒成立.
因为,对称轴为,
所以,解得.
因此,k的取值范围是
(3)①当时,
由,得,整理得

则.

则恒成立,
所以在上是减函数,则,即.
所以不等式有解,设解为,
因此.
②当时,

设,
令,得.
当时,,是减函数;
当时,,是增函数.
,,则当时,.
(或证:.)
则,因此.
因为,所以.
③当时,因为,均为偶函数,因此也成立.
综上所述,.
20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.
解:(1)因为等差数列是“λ~1”数列,则,即,
也即,此式对一切正整数n均成立.
若,则恒成立,故,而,
这与是等差数列矛盾.
所以.(此时,任意首项为1的等差数列都是“1~1”数列)
(2)因为数列是“”数列,
所以,即.
因为,所以,则.
令,则,即.
解得,即,也即,
所以数列是公比为4的等比数列.
因为,所以.则
(3)设各项非负的数列为“”数列,
则,即.
因为,而,所以,则.
令,则,即.(

①若或,则(
)只有一解为,即符合条件的数列只有一个.
(此数列为1,0,0,0,…)
②若,则(
)化为,
因为,所以,则(
)只有一解为,
即符合条件的数列只有一个.(此数列为1,0,0,0,…)
③若,则的两根分别在(0,1)与(1,+∞)内,
则方程(
)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t).
所以或.
由于数列从任何一项求其后一项均有两种不同结果,所以这样的数列有无数多个,则对应的有无数多个.
综上所述,能存在三个各项非负的数列为“”数列,的取值范围是.
数学Ⅱ(附加题)
21.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-2:矩阵与变换](本小题满分10分)
平面上点在矩阵对应的变换作用下得到点.
(1)求实数,的值;
(2)求矩阵的逆矩阵.
B.[选修4-4:坐标系与参数方程](本小题满分10分)
在极坐标系中,已知点在直线上,点在圆上(其中,).
(1)求,的值;
(2)求出直线与圆的公共点的极坐标.
C.[选修4-5:不等式选讲](本小题满分10分)
设,解不等式.
【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
22.(本小题满分10分)
在三棱锥A—BCD中,已知CB=CD=,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC的中点.
(1)求直线AB与DE所成角的余弦值;
(2)若点F在BC上,满足BF=BC,设二面角F—DE—C的大小为θ,求sinθ的值.
23.(本小题满分10分)
甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为Xn,恰有2个黑球的概率为pn,恰有1个黑球的概率为qn.
(1)求p1,q1和p2,q2;
(2)求2pn+qn与2pn-1+qn-1的递推关系式和Xn的数学期望E(Xn)(用n表示)

数学Ⅱ(附加题)参考答案
21.【选做题】
A.[选修4-2:矩阵与变换]
本小题主要考查矩阵的运算、逆矩阵等基础知识,考查运算求解能力.满分10分.
解:(1)因为
,所以
解得,所以.
(2)因为,,所以可逆,
从而.
B.[选修4-4:坐标系与参数方程]
本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.
解:(1)由,得;,又(0,0)(即(0,))也在圆C上,
因此或0.
(2)由得,所以.
因为,,所以,.
所以公共点的极坐标为.
C.[选修4-5:不等式选讲]
本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分.
解:当x>0时,原不等式可化为,解得;
当时,原不等式可化为,解得;
当时,原不等式可化为,解得.
综上,原不等式的解集为.
22.【必做题】本小题主要考查空间向量、异面直线所成角和二面角等基础知识,考查空间想象能力和运算求解能力.满分10分.
解:(1)连结OC,因为CB
=CD,O为BD中点,所以CO⊥BD.
又AO⊥平面BCD,所以AO⊥OB,AO⊥OC.
以为基底,建立空间直角坐标系O–xyz.
因为BD=2,,AO=2,
所以B(1,0,0),D(–1,0,0),C(0,2,0),A(0,0,2).
因为E为AC的中点,所以E(0,1,1).
则=(1,0,–2),=(1,1,1),
所以.
因此,直线AB与DE所成角的余弦值为.
(2)因为点F在BC上,,=(–1,2,0).
所以.
又,
故.
设为平面DEF的一个法向量,
则即
取,得,,所以.
设为平面DEC的一个法向量,又=(1,2,0),
则即取,得,,
所以.
故.
所以.
23.【必做题】本小题主要考查随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.
解:(1),,


(2)当时,
,①
,②
,得.
从而,又,
所以,.③
由②,有,又,
所以,.
由③,有,.
故,.
的概率分布
0
1
2
则.
2019年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
参考公式:
样本数据的方差,其中.
柱体的体积,其中是柱体的底面积,是柱体的高.
锥体的体积,其中是锥体的底面积,是锥体的高.
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.
1.已知集合,,则

.
2.已知复数的实部为0,其中为虚数单位,则实数a的值是

.
3.下图是一个算法流程图,则输出的S的值是

.
4.函数的定义域是

.
5.已知一组数据6,7,8,8,9,10,则该组数据的方差是

.
6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是

.
7.在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的渐近线方程是

.
8.已知数列是等差数列,是其前n项和.若,则的值是

.
9.如图,长方体的体积是120,E为的中点,则三棱锥E-BCD的体积是

.
10.在平面直角坐标系中,P是曲线上的一个动点,则点P到直线x+y=0的距离的最小值是

.
11.在平面直角坐标系中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是

.
12.如图,在中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点.若,则的值是

.
13.已知,则的值是

.
14.设是定义在R上的两个周期函数,的周期为4,的周期为2,且是奇函数.当时,,,其中k>0.若在区间(0,9]上,关于x的方程有8个不同的实数根,则k的取值范围是

.
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
15.(本小题满分14分)
在△ABC中,角A,B,C的对边分别为a,b,c.
(1)若a=3c,b=,cosB=,求c的值;
(2)若,求的值.
16.(本小题满分14分)
如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.
求证:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
17.(本小题满分14分)
如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–1、0),
F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.
已知DF1=.
(1)求椭圆C的标准方程;
(2)求点E的坐标.
18.(本小题满分16分)
如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).
(1)若道路PB与桥AB垂直,求道路PB的长;
(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;
(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.
19.(本小题满分16分)
设函数、为f(x)的导函数.
(1)若a=b=c,f(4)=8,求a的值;
(2)若a≠b,b=c,且f(x)和的零点均在集合中,求f(x)的极小值;
(3)若,且f(x)的极大值为M,求证:M≤.
20.(本小满分16分)
定义首项为1且公比为正数的等比数列为“M-数列”.
(1)已知等比数列{an}满足:,求证:数列{an}为“M-数列”;
(2)已知数列{bn}满足:,其中Sn为数列{bn}的前n项和.
①求数列{bn}的通项公式;
②设m为正整数,若存在“M-数列”{cn},对任意正整数k,当k≤m时,都有成立,求m的最大值.
2019年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ·参考答案
一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.
1.
2.2
3.5
4.
5.
6.
7.
8.16
9.10
10.4
11.
12.
13.
14.
二、解答题
15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分.
解:(1)因为,
由余弦定理,得,即.
所以.
(2)因为,
由正弦定理,得,所以.
从而,即,故.
因为,所以,从而.
因此.
16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.
证明:(1)因为D,E分别为BC,AC的中点,
所以ED∥AB.
在直三棱柱ABC-A1B1C1中,AB∥A1B1,
所以A1B1∥ED.
又因为ED?平面DEC1,A1B1平面DEC1,
所以A1B1∥平面DEC1.
(2)因为AB=BC,E为AC的中点,所以BE⊥AC.
因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.
又因为BE?平面ABC,所以CC1⊥BE.
因为C1C?平面A1ACC1,AC?平面A1ACC1,C1C∩AC=C,
所以BE⊥平面A1ACC1.
因为C1E?平面A1ACC1,所以BE⊥C1E.
17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分.
解:(1)设椭圆C的焦距为2c.
因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.
又因为DF1=,AF2⊥x轴,所以DF2=,
因此2a=DF1+DF2=4,从而a=2.
由b2=a2-c2,得b2=3.
因此,椭圆C的标准方程为.
(2)解法一:
由(1)知,椭圆C:,a=2,
因为AF2⊥x轴,所以点A的横坐标为1.
将x=1代入圆F2的方程(x-1)
2+y2=16,解得y=±4.
因为点A在x轴上方,所以A(1,4).
又F1(-1,0),所以直线AF1:y=2x+2.
由,得,
解得或.
将代入,得

因此.又F2(1,0),所以直线BF2:.
由,得,解得或.
又因为E是线段BF2与椭圆的交点,所以.
将代入,得.因此.
解法二:
由(1)知,椭圆C:.如图,连结EF1.
因为BF2=2a,EF1+EF2=2a,所以EF1=EB,
从而∠BF1E=∠B.
因为F2A=F2B,所以∠A=∠B,
所以∠A=∠BF1E,从而EF1∥F2A.
因为AF2⊥x轴,所以EF1⊥x轴.
因为F1(-1,0),由,得.
又因为E是线段BF2与椭圆的交点,所以.
因此.
18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分.
解:解法一:
(1)过A作,垂足为E.
由已知条件得,四边形ACDE为矩形,.'
因为PB⊥AB,
所以.
所以.
因此道路PB的长为15(百米).
(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.
②若Q在D处,连结AD,由(1)知,
从而,所以∠BAD为锐角.
所以线段AD上存在点到点O的距离小于圆O的半径.
因此,Q选在D处也不满足规划要求.
综上,P和Q均不能选在D处.
(3)先讨论点P的位置.
当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;
当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.
设为l上一点,且,由(1)知,B=15,
此时;
当∠OBP>90°时,在中,.
由上可知,d≥15.
再讨论点Q的位置.
由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,.此时,线段QA上所有点到点O的距离均不小于圆O的半径.
综上,当PB⊥AB,点Q位于点C右侧,且CQ=时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+.
因此,d最小时,P,Q两点间的距离为17+(百米).
解法二:
(1)如图,过O作OH⊥l,垂足为H.
以O为坐标原点,直线OH为y轴,建立平面直角坐标系.
因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,?3.
因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.
从而A(4,3),B(?4,?3),直线AB的斜率为.
因为PB⊥AB,所以直线PB的斜率为,
直线PB的方程为.
所以P(?13,9),.
因此道路PB的长为15(百米).
(2)①若P在D处,取线段BD上一点E(?4,0),则EO=4<5,所以P选在D处不满足规划要求.
②若Q在D处,连结AD,由(1)知D(?4,9),又A(4,3),
所以线段AD:.
在线段AD上取点M(3,),因为,
所以线段AD上存在点到点O的距离小于圆O的半径.
因此Q选在D处也不满足规划要求.
综上,P和Q均不能选在D处.
(3)先讨论点P的位置.
当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;
当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.
设为l上一点,且,由(1)知,B=15,此时(?13,9);
当∠OBP>90°时,在中,.
由上可知,d≥15.
再讨论点Q的位置.
由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,设Q(a,9),由,得a=,所以Q(,9),此时,线段QA上所有点到点O的距离均不小于圆O的半径.
综上,当P(?13,9),Q(,9)时,d最小,此时P,Q两点间的距离
.
因此,d最小时,P,Q两点间的距离为(百米).
19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.
解:(1)因为,所以.
因为,所以,解得.
(2)因为,
所以,
从而.令,得或.
因为,都在集合中,且,
所以.
此时,.
令,得或.列表如下:
1
+
0

0
+
极大值
极小值
所以的极小值为.
(3)因为,所以,

因为,所以,
则有2个不同的零点,设为.
由,得.
列表如下:
+
0

0
+
极大值
极小值
所以的极大值.
解法一:
.因此.
解法二:
因为,所以.
当时,.
令,则.
令,得.列表如下:
+
0

极大值
所以当时,取得极大值,且是最大值,故.
所以当时,,因此.
20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.
解:(1)设等比数列{an}的公比为q,所以a1≠0,q≠0.
由,得,解得.
因此数列为“M—数列”.
(2)①因为,所以.
由,得,则.
由,得,
当时,由,得,
整理得.
所以数列{bn}是首项和公差均为1的等差数列.
因此,数列{bn}的通项公式为bn=n.
②由①知,bk=k,.
因为数列{cn}为“M–数列”,设公比为q,所以c1=1,q>0.
因为ck≤bk≤ck+1,所以,其中k=1,2,3,…,m.
当k=1时,有q≥1;
当k=2,3,…,m时,有.
设f(x)=,则.
令,得x=e.列表如下:
x
e
(e,+∞)
+
0

f(x)
极大值
因为,所以.
取,当k=1,2,3,4,5时,,即,
经检验知也成立.
因此所求m的最大值不小于5.
若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,
所以q不存在.因此所求m的最大值小于6.
综上,所求m的最大值为5.
数学Ⅱ(附加题)
21.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-2:矩阵与变换](本小题满分10分)
已知矩阵
(1)求A2;
(2)求矩阵A的特征值.
B.[选修4-4:坐标系与参数方程](本小题满分10分)
在极坐标系中,已知两点,直线l的方程为.
(1)求A,B两点间的距离;(2)求点B到直线l的距离.
C.[选修4-5:不等式选讲](本小题满分10分)
设,解不等式.
【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
22.(本小题满分10分)设.已知.
(1)求n的值;(2)设,其中,求的值.
23.(本小题满分10分)在平面直角坐标系xOy中,设点集,
令.从集合Mn中任取两个不同的点,用随机变量X表示它们之间的距离.
(1)当n=1时,求X的概率分布;
(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).
数学Ⅱ(附加题)参考答案
21.【选做题】
A.[选修4–2:矩阵与变换]
本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.
解:(1)因为,
所以
==.
(2)矩阵A的特征多项式为
.
令,解得A的特征值.
B.[选修4–4:坐标系与参数方程]
本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.
解:(1)设极点为O.在△OAB中,A(3,),B(,),
由余弦定理,得AB=.
(2)因为直线l的方程为,
则直线l过点,倾斜角为.
又,所以点B到直线l的距离为.
C.[选修4–5:不等式选讲]
本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分.
解:当x<0时,原不等式可化为,解得x<-;
当0≤x≤时,原不等式可化为x+1–2x>2,即x<–1,无解;
当x>时,原不等式可化为x+2x–1>2,解得x>1.
综上,原不等式的解集为.
22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.
解:(1)因为,
所以,

因为,
所以,
解得.
(2)由(1)知,.

解法一:
因为,所以,
从而.
解法二:

因为,所以.
因此.
23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.
解:(1)当时,的所有可能取值是.
的概率分布为,

(2)设和是从中取出的两个点.
因为,所以仅需考虑的情况.
①若,则,不存在的取法;
②若,则,所以当且仅当,此时或,有2种取法;
③若,则,因为当时,,所以当且仅当,此时或,有2种取法;
④若,则,所以当且仅当,此时或,有2种取法.
综上,当时,的所有可能取值是和,且

因此,.
2
/
2
同课章节目录