第46讲 用样本估计总体及统计图表-2021年新高考数学一轮专题复习(新高考专版)

文档属性

名称 第46讲 用样本估计总体及统计图表-2021年新高考数学一轮专题复习(新高考专版)
格式 zip
文件大小 2.5MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2020-11-30 18:02:37

文档简介

中小学教育资源及组卷应用平台
第46讲-用样本估计总体及统计图表
考情分析
1.能根据实际问题的特点,选择恰当的统计图表对数据进行可视化描述,体会合理使用统计图表的重要性;
2.能用样本估计总体的集中趋势参数(平均数、中位数、众数),理解集中趋势参数的统计含义;
3.能用样本估计总体的离散程度参数(标准差、方差、极差),理解离散程度参数的统计含义;
4.了解样本估计总体的取值规律;5.能用样本估计百分位数,理解百分位数的统计含义.
知识梳理
1.频率分布直方图
(1)频率分布表的画法:
第一步:求极差,决定组数和组距,组距=;
第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;
第三步:登记频数,计算频率,列出频率分布表.
(2)频率分布直方图:反映样本频率分布的直方图(如图)
横轴表示样本数据,纵轴表示,每个小矩形的面积表示样本落在该组内的频率.
2.频率分布折线图和总体密度曲线
(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.
(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率分布折线图就会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.
3.样本的数字特征
数字特征
定义
众数
在一组数据中,出现次数最多的数据叫做这组数据的众数
中位数
将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数
平均数
样本数据的算术平均数,即=
方差
s2=[(x1-)2+(x2-x)2+…+(xn-x)2],其中s为标准差
4.百分位数
如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数.可表示为:一组n个观测值按数值大小排列.如,处于p%位置的值称第p百分位数.
[微点提醒]
1.频率分布直方图与众数、中位数与平均数的关系
(1)最高的小长方形底边中点的横坐标即是众数.
(2)中位数左边和右边的小长方形的面积和是相等的.
(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.
2.平均数、方差的公式推广
(1)若数据x1,x2,…,xn的平均数为,那么mx1+a,mx2+a,mx3+a,…,mxn+a的平均数是m+a.
(2)数据x1,x2,…,xn的方差为s2.
①数据x1+a,x2+a,…,xn+a的方差也为s2;
②数据ax1,ax2,…,axn的方差为a2s2.
3.中位数相当于第50百分位数.
经典例题
考点一 频率分布直方图
【例1】
“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(90分及以上为认知程度高).现从参赛者中抽取了x人,按年龄分成5组,第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45],得到如图所示的频率分布直方图,已知第一组有6人.
(1)求x;
(2)求抽取的x人的年龄的中位数(结果保留整数);
(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.
(ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;
(ⅱ)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.
解 (1)根据频率分布直方图得第一组的频率为0.01×5=0.05,∴=0.05,∴x=120.
(2)设中位数为a,则0.01×5+0.07×5+(a-30)×0.06=0.5,
∴a=≈32,则中位数为32.
(3)(ⅰ)5个年龄组成绩的平均数为1=×(93+96+97+94+90)=94,方差为s=×[(-1)2+22+32+02+(-4)2]=6.
5个职业组成绩的平均数为2=×(93+98+94+95+90)=94,方差为s=×[(-1)2+42+02+12+(-4)2]=6.8.
(ⅱ)从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更稳定(感想合理即可).
规律方法 1.频率分布直方图的性质.
(1)小长方形的面积=组距×=频率;
(2)各小长方形的面积之和等于1;
(3)小长方形的高=,所有小长方形的高的和为.
2.要理解并记准频率分布直方图与众数、中位数及平均数的关系.
考点二 样本的数字特征
【例2】
(1)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是(  )
A.x1,x2,…,xn的平均数
B.x1,x2,…,xn的标准差
C.x1,x2,…,xn的最大值
D.x1,x2,…,xn的中位数
(2)已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为,方差为s2,则(  )
A.=4,s2<2
B.=4,s2>2
C.>4,s2<2
D.>4,s2>2
解析 (1)刻画评估这种农作物亩产量稳定程度的指标是标准差.
(2)∵某7个数的平均数为4,
∴这7个数的和为4×7=28,
∵加入一个新数据4,∴==4.
又∵这7个数的方差为2,且加入一个新数据4,
∴这8个数的方差s2==<2,故选A.
答案 (1)B (2)A
规律方法 1.平均数反映了数据取值的平均水平,而方差、标准差描述了一组数据围绕平均数波动的大小,标准差、方差越大,数据离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.
2.用样本估计总体就是利用样本的数字特征来描述总体的数字特征.
[方法技巧]
1.用样本估计总体是统计的基本思想.
用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.
2.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.
(2)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大.
3.频率分布表和频率分布直方图都可直观描述样本数据的分布规律.
课时作业
1.(2020·海南期中)为了评估某家快递公司的服务质量,某评估小组进行了客户满意度调查,从该公司参与调查的客户中随机抽取500名客户的评分,评分均在区间上,分组为,,,,,其频率分布直方图如图所示.规定评分在60分以下表示对该公司的服务质量不满意,则这500名客户中对该公司的服务质量不满意的客户的人数为(

A.15
B.16
C.17
D.18
【答案】A
【解析】解:由频率分布直方图可知,评分在区间上的频率为

所以评分在区间上的客户有(人),
即对该公司的服务质量不满意的客户有15人.
2.(2020·贵州遵义·高三其他(理))从2019年12月底开始,新型冠状病毒引发的肺炎疫情不断蔓延,给全国人民带来了重大损失,如图是我国2020年1月20日至2月10日,湖北内外新增确诊人数的折线统计图,由图可知,1月20日至2月10日这几天内,下列选项中正确的是(

A.湖北新增确诊人数逐日增加
B.全国新增确诊人数呈增加的趋势
C.2月4号全国患病人数达到最多
D.湖北地区新增确诊人数的方差大于非湖北地区新增确诊人数的方差
【答案】D
【解析】湖北最新确诊人数有增有减,A错误;
全国最新确诊人数呈先增加后减少的趋势,B错误;
2月4号全国新增确诊人数达到最多,并非患病人数最多,C错误;
非湖北地区1月20日至2月10日这几天内新增确诊人数相较于湖北地区新增确诊人数的波动性较小,变化比较平稳,方差更小,D正确.
3.(2020·宁夏高三其他(理))由我国引领的5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G经济产出所做的预测.结合图,下列说法不正确的是(

A.5G的发展带动今后几年的总经济产出逐年增加
B.设备制造商的经济产出前期增长较快,后期放缓
C.设备制造商在各年的总经济产出中一直处于领先地位
D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势
【答案】C
【解析】由图可知设备制造商在各年的总经济产出中在前期处于领先地位,而后期是信息服务商处于领先地位,故C项表达错误.
4.(2020·云南师大附中高三月考(文))为了更好地配合我市“文明城市”的创建工作,我校开展了“文明行为进班级”的评比活动,现对甲?乙两个年级进行评比,从甲?乙两个年级中随机选出10个班级进行评比打分,每个班级成绩满分为100分,评分后得到如图所示的茎叶图,通过茎叶图比较甲?乙两个年级成绩的平均数及方差大小(

A.,
B.,
C.,
D.,
【答案】A
【解析】由茎叶图可知,
甲年级的平均分主要集中在70多分,而且比较集中,
而乙主要集中在80分以上,但是比较分散,
所以乙的平均数和方差较大,
5.(2020·湖南高三其他(文))以下是人数相同的四个班级某次考试成绩的频率分布直方图,其中方差最小的是(

A.
B.
C.
D.
【答案】B
【解析]方差表示数据波动性的大小、稳定程度.由频率分布直方图可知:数据越靠近均值,方差越小,所以方差最小的是B选项.
6.(2020·辽宁高三月考)为了普及环保知识,增强环保意识,某中学随机抽取30名学生参加环保知识竞赛,得分(10分制)的频数分布表如表:
得分
3
4
5
6
7
8
9
10
频数
2
3
10
6
3
2
2
2
设得分的中位数为,众数为,平均数为,则(

A.
B.
C.
D.
【答案】D
【解析】由图知,众数是;
中位数是第15个数与第16个数的平均值,
由图知将数据从大到小排第15
个数是5,第16个数是6,
所以中位数是;
平均数是;
∴.
7.(2020·河北高三月考)居民消费价格指数是反映一定时期内城乡居民所购买的生活消费品和服务项目价格变动趋势和程度的相对数,是对城市居民消费价格指数和农村居民消费价格指数进行综合汇总计算的结果.通过该指数可以观察和分析消费品的零售价格和服务项目价格变动对城乡居民实际生活费支出的影响程度.如图,是疫情期间我国的居民消费价格指数与食品类居民消费价格指数折线图,据此图,下列分析中不合理的是(

A.居民消费价格指数变化幅度相对不大
B.食品类居民消费价格指数变化幅度相对较大
C.食品类居民消费价格指数高于居民消费价格指数
D.食品类居民消费价格指数与居民消费价格指数的变化趋势很不一致
【答案】D
【解析】对于选项:由折线图可知,居民消费价格指数线比较平缓,所以居民消费价格指数变化幅度相对不大,所以选项合理;
对于选项:由折线图可知,食品类居民消费价格指数线起伏较大,所以品类居民消费价格指数变化幅度相对较大,所以选项合理;
对于选项:由折线图可知,食品类居民消费价格指数线一直在居民消费价格指数线上方,所以食品类居民消费价格指数高于居民消费价格指数,所以选项合理;
对于选项:食品类居民消费价格指数与居民消费价格指数的变化趋势大致一致,所
8.(2020·四川阆中中学高三月考(理))比较甲、乙两名学生的数学学科素养的各项能力指标值(满分为5分,分值高者为优),绘制了如图1所示的六维能力雷达图,例如图中甲的数学抽象指标值为4,乙的数学抽象指标值为5,则下面叙述正确的是(

A.乙的逻辑推理能力优于甲的逻辑推理能力
B.甲的数学建模能力指标值优于乙的直观想象能力指标值
C.乙的六维能力指标值整体水平优于甲的六维能力指标值整体水平
D.甲的数学运算能力指标值优于甲的直观想象能力指标值
【答案】C
【解析】对于选项A,
甲的逻辑推理能力指标值为4,优于乙的逻辑推理能力指标值为3,所以该命题是假命题;
对于选项B,
甲的数学建模能力指标值为4,乙的直观想象能力指标值为5,所以乙的直观想象能力指标值优于甲的数学建模能力指标值,所以该命题是假命题;
对于选项C,甲的六维能力指标值的平均值为,乙的六维能力指标值的平均值为,因为,所以选项C正确;
对于选项D,
甲的数学运算能力指标值为4,甲的直观想象能力指标值为5,所以甲的数学运算能力指标值不优于甲的直观想象能力指标值,故该命题是假命题.
9.(2020·广西高三其他(理))如图所示是某年第一季度五省情况图,则下列说法中不正确的是(

A.该年第一季度增速由高到低排位第3的是山东省
B.该年第一季度浙江省的总量最低
C.该年第一季度总量和增速由高到低排位均居同一位次的省份有2个
D.与去年同期相比,该年第一季度的总量实现了增长
【答案】B
【解析】由折线图可知A、D项均正确,该年第一季度总量和增速由高到低排位均居同一位的省份有江苏均第一.河南均第四,共2个,故C项正确:今年浙江省的增长率最低.故B项不正确.
10.(2020·内蒙古其他(理))被称为计算机第一定律的摩尔定律表明,集成电路芯片上所集成的电路的数目,每隔18个月就翻一番并且性能也将提升一倍.这说明电子产品更新换代之迅速.由于计算机与掌上智能设备的升级,以及电动汽车及物联网行业的兴起等新机遇,使得电子连接器行业增长呈现加速状态.对于汽车领域的连接器市场规模,中国产业信息发布了年之间统计折线图,根据图中信息,得到了下列结论:
①年市场规模量逐年增加;
②增长额度最大的一年为年;
③2018年比2010年增长了约;
④与年每年的市场规模相比,年每年的市场规模数据方差更小,变化更加平稳.
其中正确命题的序号为(

A.①④
B.②③
C.②③④
D.③④
【答案】B
【解析】解:对于①:由图可得数据在下降,故①错误;
对于②:由图所给数据可知年增长额度最大,故②正确;
对于③:经计算2018比2010年增长了,故③正确;
对于④:经计算年数据,平均值是,方差为;年数据,平均值是,方差为,
故年每年的市场规模数据方差更小,变化更加平稳,故④错误.
11.(2020·河南信阳·高三月考(理))近年来,随着“一带一路”倡议的推进,中国与沿线国家旅游合作越来越密切,中国到“一带一路”沿线国家的游客人也越来越多,如图是2013-2018年中国到“一带一路”沿线国家的游客人次情况,则下列说法正确的是(

①2013-2018年中国到“一带一路”沿线国家的游客人次逐年增加
②2013-2018年这6年中,2014年中国到“一带一路”沿线国家的游客人次增幅最小
③2016-2018年这3年中,中国到“一带一路”沿线国家的游客人次每年的增幅基本持平
A.①②③
B.②③
C.①②
D.③
【答案】A
【解析】由图中折线逐渐上升,即每年游客人次逐渐增多,故①正确;
由图在2014年中折线比较平缓,即2014年中游客人次增幅最小,故②正确;
根据图像在2016-2018年这3年中,折线的斜率基本相同,
故每年的增幅基本持平,故③正确;
12.(2020·广西柳州·高三二模(理))某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是(  )
A.年接待游客量逐年增加
B.各年的月接待游客量高峰期大致在8月
C.2017年1月至12月月接待游客量的中位数为30万人
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
【答案】C
【解析】解:由2017年1月至2019年12月期间月接待游客量的折线图得:
在中,年接待游客量虽然逐月波动,但总体上逐年增加,故正确;
在中,各年的月接待游客量高峰期都在8月,故正确;
在中,2017年1月至12月月接待游客量的中位数小于30万人,故错误;
在中,各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故正确.
13.(2020·中区·山东省实验中学高三月考)新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为、、、、五个等级.某试点高中2018年参加“选择考”总人数是2016年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2016年和2018年“选择考”成绩等级结果,得到如下图表:
针对该校“选择考”情况,2018年与2016年比较,下列说法正确的是(

A.获得A等级的人数减少了
B.获得B等级的人数增加了1.5倍
C.获得D等级的人数减少了一半
D.获得E等级的人数相同
【答案】B
【解析】设年参加考试人,则年参加考试人,根据图表得出两年各个等级的人数如下图所示:
年份
A
B
C
D
E
2016
2018
由图可知A,C,D选项错误,B选项正确,故本小题选B.
14.(2020·山东潍坊·高三月考)某网站为了了解某“跑团”每月跑步的平均里程,收集并整理了2019年1月至2019年11月期间该“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是(

A.月跑步平均里程的中位数为6月份对应的里程数
B.月跑步平均里程逐月增加
C.月跑步平均里程高峰期大致在8.9月份
D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳
【答案】D
【解析】解:由折线图可知月跑步平均里程比6月份高的只有9,10,11,共3个月,低的有1,2,3,4,5,7,8共7个月,
故6月份对应里程数不是中位数,因此A不正确

月跑步平均里程在1月到2月,7月到8月,10月到11都是减少的,故不是逐月增加,因此B不正确;
月跑步平均里程高峰期大致在9,10,11三个月,8月份是相对较低的,因此C不正确;
从折线图来看,1月至5月的跑步平均里程相对于6月至11月,波动性更小,变化比较平稳,因此D正确.
15.(2020·河北衡水·高三月考(理))某校学生可以根据自己的兴趣爱好,参加各种形式的社团活动.为了解学生的意向,校数学建模小组展开问卷调查并绘制统计图表如下:
你最喜欢的社团类型是什么?—您选哪一项?(单选)A.体育类如:羽毛球、足球、毽球等B.科学类如:数学建模、环境与发展、电脑等C.艺术类如:绘画、舞蹈、乐器等D.文化类如:公关演讲、书法、文学社等E.其他
由两个统计图表可以求得,选择D选项的人数和扇形统计图中E的圆心角度数分别为(

A.500,28.8°
B.250,28.6°
C.500,28.6°
D.250,28.8°
【答案】A
【解析】解:设接受调查的学生的总人数为x,
由调查结果条形图可知选择A的人数为300,
通过调查结果的扇形统计图可知:选择A的人数比例为15%,
所以,解得,
而选择D的人数为:,
扇形统计图中E的圆心角度数为:.
16.(多选题)(2020·湖南永州·月考)2020年新型冠状病毒肺炎疫情对消费饮食行业造成了很大影响,为了解A,B两家大型餐饮店受影响的程度,现统计了2020年2月到7月A,B两店每月营业额,得到如图所示的折线图,根据营业额折线图可知,下列说法正确的是(

A.A店营业额的平均值超过B店营业额的平均值
B.A店营业额在6月份达到最大值
C.A店营业额的极差比B店营业额的极差小
D.A店5月份的营业额比B店5月份的营业额小
【答案】ABC
【解析】A店的2-7月的营业额故A正确,
根据营业额折线图可知B正确;A店营业额的极差,B店营业额的极差故C正确,A店5月份的营业额45比B店5月份的营业额35大,故D错误,
17.(多选题)(2021·湖南湘潭·高三月考(理))某工厂组织员工进行专业技能比赛,下图是7位评委对甲、乙两位员工评分(满分10分)的雷达图.根据图中信息,下列说法正确的是(

A.甲得分的中位数大于乙得分的中位数
B.甲得分的众数大于乙得分的众数
C.甲得分的平均数与乙得分的平均数相等
D.甲得分的极差小于乙得分的极差
【答案】CD
【解析】由雷达图可知,甲的得分从小到大排列依次是8.8,9.1,9.3,9.5,9.5,9.7,9.9;乙的得分从小到大排列依次是8.5,8.9,9.4,9.6,9.6,9.8,10.
甲得分的中位数为9.5,乙得分的中位数为9.6,,故A错误;
甲得分的众数为9.5,乙得分的众数9.6,,故B错误;
甲得分的平均数为,乙得分的平均数,平均数相等,故C正确;
甲得分的极差为,乙得分的极差,,故D正确.
18.(多选题)(2020·山东潍坊·高三月考)随着2022年北京冬奥会临近,中国冰雪产业快速发展,冰雪运动人数快速上升,冰雪运动市场需求得到释放,将引领户外用品行业市场增长.下面是2012年至2018年中国雪场滑雪人次(万人次)与同比增长率的统计图,则下面结论中正确的是(

A.2013年至2018年,中国雪场滑雪人次的同比增长率逐年增加
B.2013年至2018年,中国雪场滑雪人次逐年增加
C.2013年与2018年相比,中国雪场滑雪人次的同比增长率近似相等,所以同比增长人数也近似相等
D.2012年到2018年,中国雪场滑雪人次增长率约为146.2%
【答案】BD
【解析】由2012年至2018年中国雪场滑雪人次(万人次)与同比增长率的统计图可知:
对于A,2013年至2015年,中国雪场滑雪人次的同比增长率逐年增加,而2015年至2018年,中国雪场滑雪人次的同比增长率逐年减少,故A错误;
对于B,2013年至2018年,中国雪场滑雪人次逐年增加,故B正确;
对于C,2013年与2018年相比,中国雪场滑雪人次的同比增长率近似相等,但是同比增长人数不相等,2018年比2013年增长人数多,故C错误;
对于D,2012年至2018年,中国雪场滑雪人次增长率约为,
19.(多选题)(2020·江苏鼓楼·南京师大附中高三月考)2020年初,突如其来的疫情改变了人们的消费方式,在目前疫情防控常态化背景下,某大型超市为了解人们以后消费方式的变化情况,更好的提高服务质量,收集并整理了本超市2020年1月份到8月份的人们线上收入和线下收入的数据,并绘制如下的折线图.根据折线图,下列结论正确的是(

A.该超市这8个月中,线上收入的平均值高于线下收入的平均值
B.该超市这8个月中,线上收入与线下收入相差最小的月份是7月
C.该超市这8个月中,每月总收入与时间呈现负相关
D.从这8个月的线上收入与线下收入对比来看,在疫情逐步得到有效控制后,人们比较愿意线下消费
【答案】ABD
【解析】对于A,由折线图可知,该超市这8个月中,线上收入的平均值为,线下收入的平均值为,可知,因此线上收入的平均值高于线下收入的平均值,故A正确;
对于B,由折线图可知,该超市这8个月中,线上收入与线下收入相差最小的月份是7月,相差1万元,故B正确;
对于C,由折线图可知,该超市这8个月中,每月总收入与时间呈现正相关,故C错误;
对于D,由折线图可知,从这8个月的线上收入与线下收入对比来看,在疫情逐步得到有效控制后,人们比较愿意线下消费,故D正确.
20.(多选题)(2020·辽宁高三月考)刘女士的网店经营坚果类食品,2019年各月份的收入、支出(单位:百元)情况的统计如图所示,下列说法中正确的是(  )
A.4至5月份的收入的变化率与11至12月份的收入的变化率相同
B.支出最高值与支出最低值的比是
C.第三季度平均收入为5000元
D.利润最高的月份是3月份和10月份
【答案】ACD
【解析】对于A选项,4至5月份的收入的变化率为,11至12月份的变化率为,因而两个变化率相同,所以A项正确.
对于B选项,支出最高值是2月份60百元,支出最低值是5月份的10百元,故支出最高值与支出最低值的比是,故B项错误.
对于C选项,第三季度的7,8,9月每个月的收入分别为40百元,50百元,60百元,故第三季度的平均收入为百元,故C选项正确.
对于D选项,利润最高的月份是3月份和10月份都是30百元,故D项正确.
综上可知,正确的为ACD,
21.(2020·广西南宁三中高三其他(理))为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
0.6
1.2
2.7
1.5
2.8
1.8
2.2
2.3
3.2
3.5
2.5
2.6
1.2
2.7
1.5
2.9
3.0
3.1
2.3
2.4
服用B药的20位患者日平均增加的睡眠时间:
3.2
1.7
1.9
0.8
0.9
2.4
1.2
2.6
1.3
1.4
1.6
0.5
1.8
0.6
2.1
1.1
2.5
1.2
2.7
0.5
(1)分别计算两组数据的平均数,从计算结果来看,哪种药的效果好?
(2)完成茎叶图,从茎叶图来看,哪种药疗效更好?
【解析】(1)设A药观测数据的平均数为,B药观测数据的平均数为.由观测结果可得:=×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,
=×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8
+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.
由以上计算结果可得>,因此可看出A药的疗效更好.
(2)由观测结果可绘制如下茎叶图:
从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在茎2,3上,而B药疗效的试验结果有的叶集中在茎0,1上,由此可看出A药的疗效更好.
22.(2020·辽宁高三月考)某种产品的质量按照其质量指标值M进行等级划分,具体如下表:
质量指标值M
等级
三等品
二等品
一等品
现从某企业生产的这种产品中随机抽取了100件作为样本,对其质量指标值M进行统计分析,得到如图所示的频率分布直方图.
(1)记A表示事件“一件这种产品为二等品或一等品”,试估计事件A的概率;
(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10000件该产品的利润;
(3)根据该产品质量指标值M的频率分布直方图,求质量指标值M的中位数的估计值(精确到0.01)
【解析】解:(1)记B表示事件“一件这种产品为二等品”,C表示事件“一件这种产品为一等品”,则事件B,C互斥,且由频率分布直方图估计,

又,
故事件A的概率估计为0.84..
(2)由(1)知,任取一件产品是一等品、二等品的概率估计值分别为0.19,065,
故任取一件产品是三等品的概率估计值为0.16,
从而10000件产品估计有一等品、二等品、三等品分别为1900,6500,1600件,
故利润估计为元
(3)因为在产品质量指标值M的频率分布直方图中,
质量指标值的频率为,
质量指标值的频率为,
故质量指标值M的中位数估计值为.
23.(2020·兴安县第三中学高三月考)为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”“锻炼”“看电视”和“其他”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成统计图,如图所示.根据统计图所提供的信息,解答下列问题:
(1)本次共调查了________名市民;
(2)补全条形统计图;
(3)该市共有480万市民,估计该市市民晚饭后1小时内“锻炼”的人数.
【解析】(1)本次共调查的市民人数为800÷40%=2
000,故填2
000.
(2)晚饭后选择“其他”的人数为2
000×28%=560,
晚饭后选择“锻炼”的人数为2
000-800-240-560=400.
将条形统计图补充完整,如图所示.
(3)晚饭后选择“锻炼”的人数所占的比例为400÷2
000=20%,故该市市民晚饭后1小时内锻炼的人数为480×20%=96(万).
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第46讲-用样本估计总体及统计图表
考情分析
1.能根据实际问题的特点,选择恰当的统计图表对数据进行可视化描述,体会合理使用统计图表的重要性;
2.能用样本估计总体的集中趋势参数(平均数、中位数、众数),理解集中趋势参数的统计含义;
3.能用样本估计总体的离散程度参数(标准差、方差、极差),理解离散程度参数的统计含义;
4.了解样本估计总体的取值规律;5.能用样本估计百分位数,理解百分位数的统计含义.
知识梳理
1.频率分布直方图
(1)频率分布表的画法:
第一步:求极差,决定组数和组距,组距=;
第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;
第三步:登记频数,计算频率,列出频率分布表.
(2)频率分布直方图:反映样本频率分布的直方图(如图)
横轴表示样本数据,纵轴表示,每个小矩形的面积表示样本落在该组内的频率.
2.频率分布折线图和总体密度曲线
(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.
(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率分布折线图就会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.
3.样本的数字特征
数字特征
定义
众数
在一组数据中,出现次数最多的数据叫做这组数据的众数
中位数
将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数
平均数
样本数据的算术平均数,即=
方差
s2=[(x1-)2+(x2-x)2+…+(xn-x)2],其中s为标准差
4.百分位数
如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数.可表示为:一组n个观测值按数值大小排列.如,处于p%位置的值称第p百分位数.
[微点提醒]
1.频率分布直方图与众数、中位数与平均数的关系
(1)最高的小长方形底边中点的横坐标即是众数.
(2)中位数左边和右边的小长方形的面积和是相等的.
(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.
2.平均数、方差的公式推广
(1)若数据x1,x2,…,xn的平均数为,那么mx1+a,mx2+a,mx3+a,…,mxn+a的平均数是m+a.
(2)数据x1,x2,…,xn的方差为s2.
①数据x1+a,x2+a,…,xn+a的方差也为s2;
②数据ax1,ax2,…,axn的方差为a2s2.
3.中位数相当于第50百分位数.
经典例题
考点一 频率分布直方图
【例1】
“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(90分及以上为认知程度高).现从参赛者中抽取了x人,按年龄分成5组,第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45],得到如图所示的频率分布直方图,已知第一组有6人.
(1)求x;
(2)求抽取的x人的年龄的中位数(结果保留整数);
(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.
(ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;
(ⅱ)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.
解 (1)根据频率分布直方图得第一组的频率为0.01×5=0.05,∴=0.05,∴x=120.
(2)设中位数为a,则0.01×5+0.07×5+(a-30)×0.06=0.5,
∴a=≈32,则中位数为32.
(3)(ⅰ)5个年龄组成绩的平均数为1=×(93+96+97+94+90)=94,方差为s=×[(-1)2+22+32+02+(-4)2]=6.
5个职业组成绩的平均数为2=×(93+98+94+95+90)=94,方差为s=×[(-1)2+42+02+12+(-4)2]=6.8.
(ⅱ)从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更稳定(感想合理即可).
规律方法 1.频率分布直方图的性质.
(1)小长方形的面积=组距×=频率;
(2)各小长方形的面积之和等于1;
(3)小长方形的高=,所有小长方形的高的和为.
2.要理解并记准频率分布直方图与众数、中位数及平均数的关系.
考点二 样本的数字特征
【例2】
(1)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是(  )
A.x1,x2,…,xn的平均数
B.x1,x2,…,xn的标准差
C.x1,x2,…,xn的最大值
D.x1,x2,…,xn的中位数
(2)已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为,方差为s2,则(  )
A.=4,s2<2
B.=4,s2>2
C.>4,s2<2
D.>4,s2>2
解析 (1)刻画评估这种农作物亩产量稳定程度的指标是标准差.
(2)∵某7个数的平均数为4,
∴这7个数的和为4×7=28,
∵加入一个新数据4,∴==4.
又∵这7个数的方差为2,且加入一个新数据4,
∴这8个数的方差s2==<2,故选A.
答案 (1)B (2)A
规律方法 1.平均数反映了数据取值的平均水平,而方差、标准差描述了一组数据围绕平均数波动的大小,标准差、方差越大,数据离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.
2.用样本估计总体就是利用样本的数字特征来描述总体的数字特征.
[方法技巧]
1.用样本估计总体是统计的基本思想.
用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.
2.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.
(2)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大.
3.频率分布表和频率分布直方图都可直观描述样本数据的分布规律.
课时作业
1.(2020·海南期中)为了评估某家快递公司的服务质量,某评估小组进行了客户满意度调查,从该公司参与调查的客户中随机抽取500名客户的评分,评分均在区间上,分组为,,,,,其频率分布直方图如图所示.规定评分在60分以下表示对该公司的服务质量不满意,则这500名客户中对该公司的服务质量不满意的客户的人数为(

A.15
B.16
C.17
D.18
2.(2020·贵州遵义·高三其他(理))从2019年12月底开始,新型冠状病毒引发的肺炎疫情不断蔓延,给全国人民带来了重大损失,如图是我国2020年1月20日至2月10日,湖北内外新增确诊人数的折线统计图,由图可知,1月20日至2月10日这几天内,下列选项中正确的是(

A.湖北新增确诊人数逐日增加
B.全国新增确诊人数呈增加的趋势
C.2月4号全国患病人数达到最多
D.湖北地区新增确诊人数的方差大于非湖北地区新增确诊人数的方差
3.(2020·宁夏高三其他(理))由我国引领的5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G经济产出所做的预测.结合图,下列说法不正确的是(

A.5G的发展带动今后几年的总经济产出逐年增加
B.设备制造商的经济产出前期增长较快,后期放缓
C.设备制造商在各年的总经济产出中一直处于领先地位
D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势
4.(2020·云南师大附中高三月考(文))为了更好地配合我市“文明城市”的创建工作,我校开展了“文明行为进班级”的评比活动,现对甲?乙两个年级进行评比,从甲?乙两个年级中随机选出10个班级进行评比打分,每个班级成绩满分为100分,评分后得到如图所示的茎叶图,通过茎叶图比较甲?乙两个年级成绩的平均数及方差大小(

A.,
B.,
C.,
D.,
5.(2020·湖南高三其他(文))以下是人数相同的四个班级某次考试成绩的频率分布直方图,其中方差最小的是(

A.
B.
C.
D.
6.(2020·辽宁高三月考)为了普及环保知识,增强环保意识,某中学随机抽取30名学生参加环保知识竞赛,得分(10分制)的频数分布表如表:
得分
3
4
5
6
7
8
9
10
频数
2
3
10
6
3
2
2
2
设得分的中位数为,众数为,平均数为,则(

A.
B.
C.
D.
7.(2020·河北高三月考)居民消费价格指数是反映一定时期内城乡居民所购买的生活消费品和服务项目价格变动趋势和程度的相对数,是对城市居民消费价格指数和农村居民消费价格指数进行综合汇总计算的结果.通过该指数可以观察和分析消费品的零售价格和服务项目价格变动对城乡居民实际生活费支出的影响程度.如图,是疫情期间我国的居民消费价格指数与食品类居民消费价格指数折线图,据此图,下列分析中不合理的是(

A.居民消费价格指数变化幅度相对不大
B.食品类居民消费价格指数变化幅度相对较大
C.食品类居民消费价格指数高于居民消费价格指数
D.食品类居民消费价格指数与居民消费价格指数的变化趋势很不一致
8.(2020·四川阆中中学高三月考(理))比较甲、乙两名学生的数学学科素养的各项能力指标值(满分为5分,分值高者为优),绘制了如图1所示的六维能力雷达图,例如图中甲的数学抽象指标值为4,乙的数学抽象指标值为5,则下面叙述正确的是(

A.乙的逻辑推理能力优于甲的逻辑推理能力
B.甲的数学建模能力指标值优于乙的直观想象能力指标值
C.乙的六维能力指标值整体水平优于甲的六维能力指标值整体水平
D.甲的数学运算能力指标值优于甲的直观想象能力指标值
9.(2020·广西高三其他(理))如图所示是某年第一季度五省情况图,则下列说法中不正确的是(

A.该年第一季度增速由高到低排位第3的是山东省
B.该年第一季度浙江省的总量最低
C.该年第一季度总量和增速由高到低排位均居同一位次的省份有2个
D.与去年同期相比,该年第一季度的总量实现了增长
10.(2020·内蒙古其他(理))被称为计算机第一定律的摩尔定律表明,集成电路芯片上所集成的电路的数目,每隔18个月就翻一番并且性能也将提升一倍.这说明电子产品更新换代之迅速.由于计算机与掌上智能设备的升级,以及电动汽车及物联网行业的兴起等新机遇,使得电子连接器行业增长呈现加速状态.对于汽车领域的连接器市场规模,中国产业信息发布了年之间统计折线图,根据图中信息,得到了下列结论:
①年市场规模量逐年增加;
②增长额度最大的一年为年;
③2018年比2010年增长了约;
④与年每年的市场规模相比,年每年的市场规模数据方差更小,变化更加平稳.
其中正确命题的序号为(

A.①④
B.②③
C.②③④
D.③④
11.(2020·河南信阳·高三月考(理))近年来,随着“一带一路”倡议的推进,中国与沿线国家旅游合作越来越密切,中国到“一带一路”沿线国家的游客人也越来越多,如图是2013-2018年中国到“一带一路”沿线国家的游客人次情况,则下列说法正确的是(

①2013-2018年中国到“一带一路”沿线国家的游客人次逐年增加
②2013-2018年这6年中,2014年中国到“一带一路”沿线国家的游客人次增幅最小
③2016-2018年这3年中,中国到“一带一路”沿线国家的游客人次每年的增幅基本持平
A.①②③
B.②③
C.①②
D.③
12.(2020·广西柳州·高三二模(理))某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是(  )
A.年接待游客量逐年增加
B.各年的月接待游客量高峰期大致在8月
C.2017年1月至12月月接待游客量的中位数为30万人
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
13.(2020·中区·山东省实验中学高三月考)新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为、、、、五个等级.某试点高中2018年参加“选择考”总人数是2016年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2016年和2018年“选择考”成绩等级结果,得到如下图表:
针对该校“选择考”情况,2018年与2016年比较,下列说法正确的是(

A.获得A等级的人数减少了
B.获得B等级的人数增加了1.5倍
C.获得D等级的人数减少了一半
D.获得E等级的人数相同
14.(2020·山东潍坊·高三月考)某网站为了了解某“跑团”每月跑步的平均里程,收集并整理了2019年1月至2019年11月期间该“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是(

A.月跑步平均里程的中位数为6月份对应的里程数
B.月跑步平均里程逐月增加
C.月跑步平均里程高峰期大致在8.9月份
D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳
15.(2020·河北衡水·高三月考(理))某校学生可以根据自己的兴趣爱好,参加各种形式的社团活动.为了解学生的意向,校数学建模小组展开问卷调查并绘制统计图表如下:
你最喜欢的社团类型是什么?—您选哪一项?(单选)A.体育类如:羽毛球、足球、毽球等B.科学类如:数学建模、环境与发展、电脑等C.艺术类如:绘画、舞蹈、乐器等D.文化类如:公关演讲、书法、文学社等E.其他
由两个统计图表可以求得,选择D选项的人数和扇形统计图中E的圆心角度数分别为(

A.500,28.8°
B.250,28.6°
C.500,28.6°
D.250,28.8°
16.(多选题)(2020·湖南永州·月考)2020年新型冠状病毒肺炎疫情对消费饮食行业造成了很大影响,为了解A,B两家大型餐饮店受影响的程度,现统计了2020年2月到7月A,B两店每月营业额,得到如图所示的折线图,根据营业额折线图可知,下列说法正确的是(

A.A店营业额的平均值超过B店营业额的平均值
B.A店营业额在6月份达到最大值
C.A店营业额的极差比B店营业额的极差小
D.A店5月份的营业额比B店5月份的营业额小
17.(多选题)(2021·湖南湘潭·高三月考(理))某工厂组织员工进行专业技能比赛,下图是7位评委对甲、乙两位员工评分(满分10分)的雷达图.根据图中信息,下列说法正确的是(

A.甲得分的中位数大于乙得分的中位数
B.甲得分的众数大于乙得分的众数
C.甲得分的平均数与乙得分的平均数相等
D.甲得分的极差小于乙得分的极差
18.(多选题)(2020·山东潍坊·高三月考)随着2022年北京冬奥会临近,中国冰雪产业快速发展,冰雪运动人数快速上升,冰雪运动市场需求得到释放,将引领户外用品行业市场增长.下面是2012年至2018年中国雪场滑雪人次(万人次)与同比增长率的统计图,则下面结论中正确的是(

A.2013年至2018年,中国雪场滑雪人次的同比增长率逐年增加
B.2013年至2018年,中国雪场滑雪人次逐年增加
C.2013年与2018年相比,中国雪场滑雪人次的同比增长率近似相等,所以同比增长人数也近似相等
D.2012年到2018年,中国雪场滑雪人次增长率约为146.2%
19.(多选题)(2020·江苏鼓楼·南京师大附中高三月考)2020年初,突如其来的疫情改变了人们的消费方式,在目前疫情防控常态化背景下,某大型超市为了解人们以后消费方式的变化情况,更好的提高服务质量,收集并整理了本超市2020年1月份到8月份的人们线上收入和线下收入的数据,并绘制如下的折线图.根据折线图,下列结论正确的是(

A.该超市这8个月中,线上收入的平均值高于线下收入的平均值
B.该超市这8个月中,线上收入与线下收入相差最小的月份是7月
C.该超市这8个月中,每月总收入与时间呈现负相关
D.从这8个月的线上收入与线下收入对比来看,在疫情逐步得到有效控制后,人们比较愿意线下消费
20.(多选题)(2020·辽宁高三月考)刘女士的网店经营坚果类食品,2019年各月份的收入、支出(单位:百元)情况的统计如图所示,下列说法中正确的是(  )
A.4至5月份的收入的变化率与11至12月份的收入的变化率相同
B.支出最高值与支出最低值的比是
C.第三季度平均收入为5000元
D.利润最高的月份是3月份和10月份
21.(2020·广西南宁三中高三其他(理))为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
0.6
1.2
2.7
1.5
2.8
1.8
2.2
2.3
3.2
3.5
2.5
2.6
1.2
2.7
1.5
2.9
3.0
3.1
2.3
2.4
服用B药的20位患者日平均增加的睡眠时间:
3.2
1.7
1.9
0.8
0.9
2.4
1.2
2.6
1.3
1.4
1.6
0.5
1.8
0.6
2.1
1.1
2.5
1.2
2.7
0.5
(1)分别计算两组数据的平均数,从计算结果来看,哪种药的效果好?
(2)完成茎叶图,从茎叶图来看,哪种药疗效更好?
22.(2020·辽宁高三月考)某种产品的质量按照其质量指标值M进行等级划分,具体如下表:
质量指标值M
等级
三等品
二等品
一等品
现从某企业生产的这种产品中随机抽取了100件作为样本,对其质量指标值M进行统计分析,得到如图所示的频率分布直方图.
(1)记A表示事件“一件这种产品为二等品或一等品”,试估计事件A的概率;
(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10000件该产品的利润;
(3)根据该产品质量指标值M的频率分布直方图,求质量指标值M的中位数的估计值(精确到0.01)
23.(2020·兴安县第三中学高三月考)为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”“锻炼”“看电视”和“其他”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成统计图,如图所示.根据统计图所提供的信息,解答下列问题:
(1)本次共调查了________名市民;
(2)补全条形统计图;
(3)该市共有480万市民,估计该市市民晚饭后1小时内“锻炼”的人数.
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)
同课章节目录