第51讲 事件与概率-2021年新高考数学一轮专题复习(新高考专版)

文档属性

名称 第51讲 事件与概率-2021年新高考数学一轮专题复习(新高考专版)
格式 zip
文件大小 504.2KB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2020-12-01 08:33:23

文档简介

中小学教育资源及组卷应用平台
第51讲
事件与概率
考情分析
1.理解样本点和有限样本空间的含义,理解随机事件与样本点的关系;
2.了解随机事件的并、交与互斥的含义,能结合实例进行随机事件的并、交运算;
3.理解概率的性质,掌握随机事件概率的运算法则;
4.会用频率估计概率.
知识梳理
1.样本点和样本空间
随机试验的每一个可能的结果称为样本点,记作ω;随机试验的所有样本点组成的集合称为样本空间,记作Ω.
2.概率与频率
(1)概率定义:在n次重复进行的试验中,事件A发生的频率,当n很大时,总是在某个常数附近摆动,随着n的增加,摆动幅度越来越小,这时就把这个常数叫做事件A的概率,记作P(A).
(2)概率与频率的关系:概率可以通过概率来“测量”,频率是频率的一个近似.
3.事件的关系与运算
定义
符号表示
包含关系
如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)
B?A(或A?B)
相等关系
若B?A且A?B
A=B
并事件(和事件)
若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)
A∪B(或A+B)
交事件(积事件)
若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)
A∩B(或AB)
互斥事件
若A∩B为不可能事件,则称事件A与事件B互斥
A∩B=?
对立事件
若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件
A∩B=?P(A∪B)=1
4.概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率P(E)=1.
(3)不可能事件的概率P(F)=0.
(4)互斥事件概率的加法公式
①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).
②若事件B与事件A互为对立事件,则P(A)=1-P(B).
[微点提醒]
1.任一随机事件A都是样本空间Ω的一个子集,称事件A发生当且仅当试验的结果是子集A中的元素.
2.从集合的角度理解互斥事件和对立事件
(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.
(2)事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.
3.概率加法公式的推广
当一个事件包含多个结果且各个结果彼此互斥时,
要用到概率加法公式的推广,即P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
经典例题
考点一 样本点与样本空间
【例1】
将一枚质地均匀的骰子相继投掷两次,请回答以下问题:
(1)写出样本点和样本空间;
(2)用A表示随机事件“至少有一次掷出1点”,试用样本点表示事件A;
(3)用Aj(j=1,2,3,4,5,6)表示随机事件“第一次掷出1点,第二次掷出j点”;用B表示随机事件“第一次掷出1点”,试用随机事件Aj表示随机事件B.
解 (1)首先确定样本点,用1,2,3,4,5,6表示掷出的点数,用(i,j)表示“第一次掷出i点,第二次掷出j点”,则相继投掷两次的所有可能结果如下:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
注意到(1,2)和(2,1)是不同的样本点,分别表示“第一次掷出1点,第二次掷出2点”和“第一次掷出2点,第二次掷出1点”这两个随机事件,因此样本空间共有36个样本点.把每个样本点称为基本事件.样本空间为
Ω=
={(i,j)|i,j=1,2,3,4,5,6}.
(2)因为随机事件A=“至少有一次掷出1点”,则A包括上述样本空间中所有出现1的样本点,因此
A=.
(3)Aj={(1,j)},j=1,2,3,4,5,6.因为这些事件任何一个发生事件B就发生,所以B=A1∪A2∪A3∪A4∪A5∪A6.
规律方法 1.在具体问题的研究中,描述随机现象的第一步就是建立样本空间.关于样本空间的几点说明:
(1)样本空间中的元素可以是数也可以不是数;
(2)样本空间中的样本点可以是有限多个的,也可以是无限多个的.仅含两个样本点的样本空间是最简单的样本空间;
(3)建立样本空间,事实上就是建立随机现象的数学模型.因此,一个样本空间可以概括许多内容大不相同的实际问题.例如只包含两个样本点的样本空间Ω={H,T},它既可以作为抛掷硬币出现正面或出现反面的模型,也可以作为产品检验中合格与不合格的模型,又能用于排队现象中有人排队与无人排队的模型等.
考点二 随机事件的关系
【例2】
(1)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”(  )
A.是对立事件
B.是不可能事件
C.是互斥但不对立事件
D.不是互斥事件
(2)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 (1)显然两个事件不可能同时发生,但两者可能同时不发生,因为红牌可以分给丙、丁两人,综上,这两个事件为互斥但不对立事件.
(2)若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B)=1;投掷一枚硬币3次,满足P(A)+P(B)=1,但A,B不一定是对立事件,如:事件A:“至少出现一次正面”,事件B:“出现3次正面”,则P(A)=,P(B)=,满足P(A)+P(B)=1,但A,B不是对立事件.
答案 (1)C (2)A
规律方法 1.准确把握互斥事件与对立事件的概念:
(1)互斥事件是不可能同时发生的事件,但也可以同时不发生;(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.
2.判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.
考点三 随机事件的频率与概率
【例3】
某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计
了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[35,40]
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为=0.6.
所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.
(2)当这种酸奶一天的进货量为450瓶时,
若最高气温低于20,则Y=200×6+(450-200)×2-450×4=-100;
若最高气温位于区间[20,25),则Y=300×6+(450-300)×2-450×4=300;
若最高气温不低于25,则Y=450×(6-4)=900,
所以,利润Y的所有可能值为-100,300,900.
Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8.
因此Y大于零的概率的估计值为0.8.
规律方法 1.概率与频率的关系
频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.
2.随机事件概率的求法
利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.
提醒 概率的定义是求一个事件概率的基本方法.
考点四 互斥事件与对立事件的概率
【例4】
经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:
排队人数
0
1
2
3
4
5人及5人以上
概率
0.1
0.16
0.3
0.3
0.1
0.04
求:(1)至多2人排队等候的概率;
(2)(一题多解)至少3人排队等候的概率.
解 记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.
(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,
所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)
=0.1+0.16+0.3=0.56.
(2)法一 记“至少3人排队等候”为事件H,
则H=D∪E∪F,
所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.
法二 记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.
规律方法 1.求解本题的关键是正确判断各事件之间的关系,以及把所求事件用已知概率的事件表示出来.
2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P()求解.当题目涉及“至多”、“至少”型问题,多考虑间接法.
[方法技巧]
1.随机试验、样本空间与随机事件的关系
每一个随机试验相应地有一个样本空间,样本空间的子集就是随机事件.
2.对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).
3.对立事件不仅两个事件不能同时发生,而且二者必有一个发生.
4.求复杂的互斥事件的概率一般有两种方法:
(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算.
(2)间接法:先求此事件的对立事件的概率,再用公式P(A)=1-P(),即运用逆向思维(正难则反).
课时作业
1.(2020·全国高三(文))12件同类产品中,有10件是正品,2件是次品,从中任意抽出3件,与“抽得1件次品2件正品”互斥而不对立的事件是(

A.抽得3件正品
B.抽得至少有1件正品
C.抽得至少有1件次品
D.抽得3件正品或2件次品1件正品
【答案】A
【解析】对于
,
抽得3件正品与抽得1件次品2件正品是互斥而不对立事件;
对于
,
抽得至少有1件正品与抽得1件次品2件正品不是互斥事件,
对于
,
抽得至少有1件次品与抽得1件次品2件正品不是互斥事件,
对于
,
抽得3件正品或2件次品1件正品与抽得1件次品2件正品既是互斥也是对立事件.
2.(2020·重庆市云阳高级中学校高三月考)我国古代数学名著《数书九章》是南宋数学家秦九韶所著数学著作,书中共列算题81问,分为9类.全书采用问题集的形式,并不按数学方法来分类.题文也不只谈数学,还涉及自然现象和社会生活,成为了解当时社会政治和经济生活的重要参考文献.《数书九章》中有“米谷粒分”一题,现有类似的题:粮仓开仓收粮,粮农送来米1634石,验得米夹谷,抽样取米一把,数得254粒夹谷25粒,则这批米内夹谷约为(

A.158石
B.159石
C.160石
D.161石
【答案】D
【解析】由题意可知这批米内夹谷约为(石).
3.(2020·苏州大学附属中学高二月考)甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.3,乙击中敌机的概率为0.5,敌机被击中的概率为(

A.0.8
B.0.65
C.0.15
D.0.5
【答案】B
【解析】根据题意,敌机没被击中的概率为,
所以敌机被击中的概率为.
4.(2020·北京市第十三中学高三开学考试)甲、乙两人独立地解同一问题,甲解出这个问题的概率,乙解出这个问题的概率是,那么其中至少有1人解出这个问题的概率是(
)
A.
B.
C.
D.
【答案】D
【解析】甲解决这个问题的概率是,
甲解决不了这个问题的概率是,
乙解决这个问题的概率是,
乙解决不了这个问题的概率是
则甲、乙两人均不能解决该问题的概率为
则甲、乙两人至少有一人解决这个问题的概率为
5.(2020·全国高三(文))气象台预报“本市明天降雨概率是70%”,下列说法正确的是(

A.本市明天将有70%的地区降雨
B.本市有天将有70%的时间降雨
C.明天出行不带雨具淋雨的可能性很大
D.明天出行不带雨具肯定要淋雨
【答案】C
【解析】气象台预报“本市明天降雨概率是70%”,则本市明天降雨的可能性比较大.与降水地区面积和降水时间无关,所以A,B错误.
降水概率是事件发生的可能,不是一定会发生的事情,所以D错误.
而由降水概率是70%,可知降水概率较大,所以明天出行不带雨具淋雨的可能性很大,所以C正确.
6.“辽宁舰”是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,在“辽宁舰”的飞行甲板后部有四条拦阻索,降落的飞行员须捕捉钩挂上其中一条,则为“成功着陆”,舰载机白天挂住第一条拦阻索的概率为18%,挂住第二条、第三条拦阻索的概率为62%,捕捉钩未挂住拦阻索需拉起复飞的概率约为5%.现有一架歼-15战机白天着舰演练20次,则其被第四条拦阻索挂住的次数约为(

A.5
B.3
C.1
D.4
【答案】B
【解析】被第四条拦阻索挂住的概率P=1-18%-62%-5%=15%.故被四条拦阻索挂住的次数约为15%×20=3.
7.在投掷一枚硬币的试验中,共投掷了100次,“正面朝上”的频数为51,则“正面朝上”的频率为(

A.49
B.0.5
C.0.51
D.0.49
【答案】C
【解析】由题意,根据事件发生的频率的定义可知,“正面朝上”的频率为=0.51.
8.(2020·山东广饶一中高一期末)一个人打靶时连续射击两次,事件“两次都中靶”的对立事件是()
A.至多有一次中靶
B.至少有一次中靶
C.只有一次中靶
D.两次都不中
【答案】A
【解析】根据对立事件的定义可得,
事件“两次都中靶”的对立事件是:至多有一次中靶,故选A.
9.(2020·兴安县第三中学高三月考)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为
A.0.3
B.0.4
C.0.6
D.0.7
【答案】B
【详解】设事件A为只用现金支付,事件B为只用非现金支付,

因为
所以,故选B.
10.(2020·云南高三其他(理))众所周知,人类通常有4种血型:、、、,又已知,4种血型、、、的人数所占比分别为41%,28%,24%,7%,在临床上,某一血型的人能输血给什么血型的人,是有严格规定的,而这条输血法则是生物学的一大成就.这些规则可以归结为4条:①;②;③;④不满足上述3条法则的任何关系式都是错误的(代表、、、任一种血型).按照规则,在不知道双方血型的情况下,一位供血者能为一位受血者正确输血的概率为(

A.0.5625
B.0.4375
C.0.4127
D.0.5873
【答案】D
【解析】①当供血者血型为型时,受血者为、、、,均可,故概率,②当供血者血型为型时,受血者血型为、,故概率,③当供血者血型为型时,受血者血型为、,故概率,④当供血者血型为型时,受血者血型为,故概率,
故正确输血的概率为.
11.(2020·山东滕州市第一中学新校高一期末)掷一枚骰子的试验中,出现各点的概率均为,事件表示“出现小于5的偶数点”,事件表示“出现小于5的点数”,则一次试验中,事件(表示事件的对立事件)发生的概率为  
A.
B.
C.
D.
【答案】C
【解析】解:事件表示“小于5的点数出现”,
的对立事件是“大于或等于5的点数出现”,
表示事件是出现点数为5和6.
事件表示“小于5的偶数点出现”,
它包含的事件是出现点数为2和4,


12.(2020·广西高三其他(文))在一个不透明的容器中有6个小球,其中有4个黄球,2个红球,它们除颜色外完全相同,如果一次随机取出2个球,那么至少有1个红球的概率为(

A.
B.
C.
D.
【答案】B
【解析】设一次随机取出2个球,至少有1个红球为事件A,
则,故选:B
13.(2020·南开·天津二十五中高三开学考试)两人独立地破译一个密码,他们能译出的概率分别为、,则密码被译出的概率为(  )
A.
B.
C.
D.
【答案】B
【解析】由题意可知,两人都破译不出密码的概率为,
因此,密码被译出的概率为.
14.(2020·贵州高二期末(文))从装有2个白球和3个黑球的口袋内任取两个球,那么下列事件中是互斥而不对立的事件是(

A.“恰有两个白球”与“恰有一个黑球”
B.“至少有一个白球”与“至少有一个黑球”
C.“都是白球”与“至少有一个黑球”
D.“至少有一个黑球”与“都是黑球”
【答案】A
【解析】对于A,事件:“恰有两个白球”与事件:“恰有一个黑球”不能同时发生,
但从口袋中任取两个球时还有可能两个都是黑球,
∴两个事件是互斥事件但不是对立事件,∴A正确;
对于B,事件:“至少有一个黑球”与事件:“至少有一个白球”可以同时发生,
如:一个白球一个黑球,∴这两个事件不是互斥事件,∴B不正确;
对于C.“都是白球”与“至少有一个黑球”不能同时发生,且对立,故C错误;
对于D,“至少有一个黑球”与“都是黑球”可以同时发生,故不互斥.
15.(2020·全国高一课时练习)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为(

A.
B.
C.
D.
【答案】A
【解析】∵甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,
∴甲不输的概率为P=

16.(2020·全国高三其他(理))为了解我国古代数学的辉煌成就,学校决定从《周髀算经》《九章算术》等10部古代数学专著中选择2部作为“数学文化”校本课程学习内容,已知这10部专著中有7部产生于魏晋南北朝时期.则所选2部专著中至多有一部是魏晋南北朝时期的专著的概率为(

A.
B.
C.
D.
【答案】D
【解析】设事件“所选2部专著中至多有一部是魏晋南北朝时期的专著”为事件A,
所以事件“所选2部专著中2部都是魏晋南北朝时期的专著”为事件,
因为,
所以,故选:D
17.(2020·河南南阳中学高二月考(理))某转播商转播一场排球比赛,比赛采取五局三胜制,即一方先获得三局胜利比赛就结束,已知比赛双方实力相当,且每局比赛胜负都是相互独立的,若每局比赛转播商可以获得20万元的收益,则转播商获利不低于80万元的概率是(

A.
B.
C.
D.
【答案】A
【解析】解:当比赛中的一方连续三次取得胜利,则转播商获利低于80万元,
转播商获利不低于80万元的概率是
.
18.(2020·全国高三专题练习)我国古代数学名著《九章算术》中有“米谷粒分”题:粮仓开仓收粮,有人送来米1536石,验得米内夹谷,抽样取米一把,数得256粒内夹谷18粒,则这批米内夹谷约为(

A.108石
B.169石
C.237石
D.338石
【答案】A
【解析】粒内夹谷18粒,
米中含谷的频率为,
石中夹谷约为(石).故选A.
19.(2020·四川省泸县第一中学高三开学考试(文))某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是(

A.62%
B.56%
C.46%
D.42%
【答案】C
【解析】记“该中学学生喜欢足球”为事件,“该中学学生喜欢游泳”为事件,则“该中学学生喜欢足球或游泳”为事件,“该中学学生既喜欢足球又喜欢游泳”为事件,
则,,,
所以
所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为.
20.(2020·四川棠湖中学高三二模(理))从装有若干个大小相同的红球、白球和黄球的袋中随机摸出1个球,摸到红球、白球和黄球的概率分别为,从袋中随机摸出一个球,记下颜色后放回,连续摸3次,则记下的颜色中有红有白,但没有黄的概率为(

A.
B.
C.
D.
【答案】C
【解析】根据题意:概率等于没有黄球的概率减去只有白球或只有红球的概率.
即.
21.(多选题)(2020·福建省武平县第一中学高二月考)下列对各事件发生的概率判断正确的是(

A.某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,那么该生在上学路上到第3个路口首次遇到红灯的概率为
B.三人独立地破译一份密码,他们能单独译出的概率分别为,,,假设他们破译密码是彼此独立的,则此密码被破译的概率为
C.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为
D.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是
【答案】AC
【解析】对于A,该生在第3个路口首次遇到红灯的情况为前2个路口不是红灯,第3个路口是红灯,所以概率为,故A正确;
对于B,用A、B、C分別表示甲、乙、丙三人能破译出密码,则,,,“三个人都不能破译出密码”发生的概率为,所以此密码被破译的概率为,故B不正确;
对于C,设“从甲袋中取到白球”为事件A,则,设“从乙袋中取到白球”为事件B,则,故取到同色球的概率为,故C正确;
对于D,易得,即,
即,∴,又,
∴,∴,故D错误
22.(多选题)(2020·泰安市基础教育教学研究室其他)下列说法正确的是(

A.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一、二、三、四年级本科生人数之比为6:5:5:4,则应从一年级中抽取90名学生
B.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率为
C.已知变量x与y正相关,且由观测数据算得=3,=3.5,则由该观测数据算得的线性回归方程可能是=0.4x+2.3
D.从装有2个红球和2个黑球的口袋内任取2个球,至少有一个黑球与至少有一个红球是两个互斥而不对立的事件
【答案】ABC
【解析】A.由分层抽样,应制取人数为,A正确;
B.恰好取到1件次品的概率为,B正确;
C.∵,直线=0.4x+2.3过中心点,可能是回归直线方程,C正确;
D.一红球一黑球这个事件即是至少有一个红球,也是至少有一个黑球,因此它们不互斥,D错误.
23.(2020·河北石家庄二中高三月考(理))某公司共有职工8000名,从中随机抽取了100名,调查上?下班乘车所用时间,得下表
所用时间(分钟)
人数
公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘车时间t(分钟)的关系是其中表示不超过的最大整数.以样本频率为概率:
(1)估算公司每月用于路途补贴的费用总额(元);
(2)以样本频率作为概率,求随机选取四名职工,至少有两名路途补贴超过300元的概率.
【解析】(1)补贴金额y(元)与乘车时间t(分钟)的关系是:
其中表示不超过的最大整数
根据调查上?下班乘车所用时间表格可得:
的可能取值为:,,,,
的可能取值为:,,,,
即:的可能取值为:,,,,.
记一名职工所享受的路途补贴为(元).
的可能值为,,,,.
根据调查上?下班乘车所用时间表格可得:X的分布列为
X
200
240
280
320
360
P
的均值为.
该公司每月用于路途补贴的费用总额约为:
(元).
(2)路途补贴超过元
根据补贴金额y(元)与乘车时间t(分钟)的关系是:
其中表示不超过的最大整数
可得:当时,.
名职工中路途补贴超过元的概率:

记事件“名职工中至少有名路途补贴超过300元”为,
当有名路途补贴超过元时,概率为:
当有名路途补贴超过元时,概率为:
当有名路途补贴超过元时,概率为:

24.(2020·上海高三专题练习)设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某1
h内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.
(1)求甲、乙、丙每台机器在这1
h内需要照顾的概率分别是多少?
(2)计算这1
h内至少有一台机器需要照顾的概率.
【解析】(1)设甲、乙、丙每台机器在这1
h内需要照顾的概率分别为,
由题意,,,,
解得.
(2)设1
h内三台机器至少有一台机器需要照顾为事件A,则为三台机器均不需要照顾,
则,
所以.
25.(2020·山东省实验中学高三月考)公元2020年春,我国湖北武汉出现了新型冠状病毒,人感染后会出现发热、咳嗽、气促和呼吸困难等,严重的可导致肺炎甚至危及生命.为了尽快遏制住病毒的传播,我国科研人员,在研究新型冠状病毒某种疫苗的过程中,利用小白鼠进行科学试验.为了研究小白鼠连续接种疫苗后出现症状的情况,决定对小白鼠进行做接种试验.该试验的设计为:①对参加试验的每只小白鼠每天接种一次;②连续接种三天为一个接种周期;③试验共进行3个周期.已知每只小白鼠接种后当天出现症状的概率均为,假设每次接种后当天是否出现症状与上次接种无关.
(1)若某只小白鼠出现症状即对其终止试验,求一只小白鼠至多能参加一个接种周期试验的概率;
(2)若某只小白鼠在一个接种周期内出现2次或3次症状,则在这个接种周期结束后,对其终止试验.设一只小白鼠参加的接种周期为,求的分布列及数学期望.
【解析】(1)已知每只小白鼠接种后当天出现症状的概率均为,且每次试验间相互独立,所以,一只小白鼠第一天接种后当天出现症状的概率为
在第二天接种后当天出现症状的概率为:
能参加第三天试验但不能参加下一个接种同期的概率为:,
∴一只小白鼠至多参加一个接种周期试验的概率为:

(2)设事件为“在一个接种周期内出现2次或3次症状”,则

随机变量可能的取值为1,2,3,则

所以的分布列为
1
2
3
随机变量的数学期望为:
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第51讲
事件与概率
考情分析
1.理解样本点和有限样本空间的含义,理解随机事件与样本点的关系;
2.了解随机事件的并、交与互斥的含义,能结合实例进行随机事件的并、交运算;
3.理解概率的性质,掌握随机事件概率的运算法则;
4.会用频率估计概率.
知识梳理
1.样本点和样本空间
随机试验的每一个可能的结果称为样本点,记作ω;随机试验的所有样本点组成的集合称为样本空间,记作Ω.
2.概率与频率
(1)概率定义:在n次重复进行的试验中,事件A发生的频率,当n很大时,总是在某个常数附近摆动,随着n的增加,摆动幅度越来越小,这时就把这个常数叫做事件A的概率,记作P(A).
(2)概率与频率的关系:概率可以通过概率来“测量”,频率是频率的一个近似.
3.事件的关系与运算
定义
符号表示
包含关系
如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)
B?A(或A?B)
相等关系
若B?A且A?B
A=B
并事件(和事件)
若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)
A∪B(或A+B)
交事件(积事件)
若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)
A∩B(或AB)
互斥事件
若A∩B为不可能事件,则称事件A与事件B互斥
A∩B=?
对立事件
若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件
A∩B=?P(A∪B)=1
4.概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率P(E)=1.
(3)不可能事件的概率P(F)=0.
(4)互斥事件概率的加法公式
①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).
②若事件B与事件A互为对立事件,则P(A)=1-P(B).
[微点提醒]
1.任一随机事件A都是样本空间Ω的一个子集,称事件A发生当且仅当试验的结果是子集A中的元素.
2.从集合的角度理解互斥事件和对立事件
(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.
(2)事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.
3.概率加法公式的推广
当一个事件包含多个结果且各个结果彼此互斥时,
要用到概率加法公式的推广,即P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
经典例题
考点一 样本点与样本空间
【例1】
将一枚质地均匀的骰子相继投掷两次,请回答以下问题:
(1)写出样本点和样本空间;
(2)用A表示随机事件“至少有一次掷出1点”,试用样本点表示事件A;
(3)用Aj(j=1,2,3,4,5,6)表示随机事件“第一次掷出1点,第二次掷出j点”;用B表示随机事件“第一次掷出1点”,试用随机事件Aj表示随机事件B.
解 (1)首先确定样本点,用1,2,3,4,5,6表示掷出的点数,用(i,j)表示“第一次掷出i点,第二次掷出j点”,则相继投掷两次的所有可能结果如下:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
注意到(1,2)和(2,1)是不同的样本点,分别表示“第一次掷出1点,第二次掷出2点”和“第一次掷出2点,第二次掷出1点”这两个随机事件,因此样本空间共有36个样本点.把每个样本点称为基本事件.样本空间为
Ω=
={(i,j)|i,j=1,2,3,4,5,6}.
(2)因为随机事件A=“至少有一次掷出1点”,则A包括上述样本空间中所有出现1的样本点,因此
A=.
(3)Aj={(1,j)},j=1,2,3,4,5,6.因为这些事件任何一个发生事件B就发生,所以B=A1∪A2∪A3∪A4∪A5∪A6.
规律方法 1.在具体问题的研究中,描述随机现象的第一步就是建立样本空间.关于样本空间的几点说明:
(1)样本空间中的元素可以是数也可以不是数;
(2)样本空间中的样本点可以是有限多个的,也可以是无限多个的.仅含两个样本点的样本空间是最简单的样本空间;
(3)建立样本空间,事实上就是建立随机现象的数学模型.因此,一个样本空间可以概括许多内容大不相同的实际问题.例如只包含两个样本点的样本空间Ω={H,T},它既可以作为抛掷硬币出现正面或出现反面的模型,也可以作为产品检验中合格与不合格的模型,又能用于排队现象中有人排队与无人排队的模型等.
考点二 随机事件的关系
【例2】
(1)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”(  )
A.是对立事件
B.是不可能事件
C.是互斥但不对立事件
D.不是互斥事件
(2)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 (1)显然两个事件不可能同时发生,但两者可能同时不发生,因为红牌可以分给丙、丁两人,综上,这两个事件为互斥但不对立事件.
(2)若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B)=1;投掷一枚硬币3次,满足P(A)+P(B)=1,但A,B不一定是对立事件,如:事件A:“至少出现一次正面”,事件B:“出现3次正面”,则P(A)=,P(B)=,满足P(A)+P(B)=1,但A,B不是对立事件.
答案 (1)C (2)A
规律方法 1.准确把握互斥事件与对立事件的概念:
(1)互斥事件是不可能同时发生的事件,但也可以同时不发生;(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.
2.判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.
考点三 随机事件的频率与概率
【例3】
某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计
了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[35,40]
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为=0.6.
所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.
(2)当这种酸奶一天的进货量为450瓶时,
若最高气温低于20,则Y=200×6+(450-200)×2-450×4=-100;
若最高气温位于区间[20,25),则Y=300×6+(450-300)×2-450×4=300;
若最高气温不低于25,则Y=450×(6-4)=900,
所以,利润Y的所有可能值为-100,300,900.
Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8.
因此Y大于零的概率的估计值为0.8.
规律方法 1.概率与频率的关系
频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.
2.随机事件概率的求法
利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.
提醒 概率的定义是求一个事件概率的基本方法.
考点四 互斥事件与对立事件的概率
【例4】
经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:
排队人数
0
1
2
3
4
5人及5人以上
概率
0.1
0.16
0.3
0.3
0.1
0.04
求:(1)至多2人排队等候的概率;
(2)(一题多解)至少3人排队等候的概率.
解 记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.
(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,
所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)
=0.1+0.16+0.3=0.56.
(2)法一 记“至少3人排队等候”为事件H,
则H=D∪E∪F,
所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.
法二 记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.
规律方法 1.求解本题的关键是正确判断各事件之间的关系,以及把所求事件用已知概率的事件表示出来.
2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P()求解.当题目涉及“至多”、“至少”型问题,多考虑间接法.
[方法技巧]
1.随机试验、样本空间与随机事件的关系
每一个随机试验相应地有一个样本空间,样本空间的子集就是随机事件.
2.对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).
3.对立事件不仅两个事件不能同时发生,而且二者必有一个发生.
4.求复杂的互斥事件的概率一般有两种方法:
(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算.
(2)间接法:先求此事件的对立事件的概率,再用公式P(A)=1-P(),即运用逆向思维(正难则反).
课时作业
1.(2020·全国高三(文))12件同类产品中,有10件是正品,2件是次品,从中任意抽出3件,与“抽得1件次品2件正品”互斥而不对立的事件是(

A.抽得3件正品
B.抽得至少有1件正品
C.抽得至少有1件次品
D.抽得3件正品或2件次品1件正品
2.(2020·重庆市云阳高级中学校高三月考)我国古代数学名著《数书九章》是南宋数学家秦九韶所著数学著作,书中共列算题81问,分为9类.全书采用问题集的形式,并不按数学方法来分类.题文也不只谈数学,还涉及自然现象和社会生活,成为了解当时社会政治和经济生活的重要参考文献.《数书九章》中有“米谷粒分”一题,现有类似的题:粮仓开仓收粮,粮农送来米1634石,验得米夹谷,抽样取米一把,数得254粒夹谷25粒,则这批米内夹谷约为(

A.158石
B.159石
C.160石
D.161石
3.(2020·苏州大学附属中学高二月考)甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.3,乙击中敌机的概率为0.5,敌机被击中的概率为(

A.0.8
B.0.65
C.0.15
D.0.5
4.(2020·北京市第十三中学高三开学考试)甲、乙两人独立地解同一问题,甲解出这个问题的概率,乙解出这个问题的概率是,那么其中至少有1人解出这个问题的概率是(
)
A.
B.
C.
D.
5.(2020·全国高三(文))气象台预报“本市明天降雨概率是70%”,下列说法正确的是(

A.本市明天将有70%的地区降雨
B.本市有天将有70%的时间降雨
C.明天出行不带雨具淋雨的可能性很大
D.明天出行不带雨具肯定要淋雨
6.“辽宁舰”是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,在“辽宁舰”的飞行甲板后部有四条拦阻索,降落的飞行员须捕捉钩挂上其中一条,则为“成功着陆”,舰载机白天挂住第一条拦阻索的概率为18%,挂住第二条、第三条拦阻索的概率为62%,捕捉钩未挂住拦阻索需拉起复飞的概率约为5%.现有一架歼-15战机白天着舰演练20次,则其被第四条拦阻索挂住的次数约为(

A.5
B.3
C.1
D.4
7.在投掷一枚硬币的试验中,共投掷了100次,“正面朝上”的频数为51,则“正面朝上”的频率为(

A.49
B.0.5
C.0.51
D.0.49
8.(2020·山东广饶一中高一期末)一个人打靶时连续射击两次,事件“两次都中靶”的对立事件是()
A.至多有一次中靶
B.至少有一次中靶
C.只有一次中靶
D.两次都不中
9.(2020·兴安县第三中学高三月考)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为
A.0.3
B.0.4
C.0.6
D.0.7
10.(2020·云南高三其他(理))众所周知,人类通常有4种血型:、、、,又已知,4种血型、、、的人数所占比分别为41%,28%,24%,7%,在临床上,某一血型的人能输血给什么血型的人,是有严格规定的,而这条输血法则是生物学的一大成就.这些规则可以归结为4条:①;②;③;④不满足上述3条法则的任何关系式都是错误的(代表、、、任一种血型).按照规则,在不知道双方血型的情况下,一位供血者能为一位受血者正确输血的概率为(

A.0.5625
B.0.4375
C.0.4127
D.0.5873
11.(2020·山东滕州市第一中学新校高一期末)掷一枚骰子的试验中,出现各点的概率均为,事件表示“出现小于5的偶数点”,事件表示“出现小于5的点数”,则一次试验中,事件(表示事件的对立事件)发生的概率为  
A.
B.
C.
D.
12.(2020·广西高三其他(文))在一个不透明的容器中有6个小球,其中有4个黄球,2个红球,它们除颜色外完全相同,如果一次随机取出2个球,那么至少有1个红球的概率为(

A.
B.
C.
D.
13.(2020·南开·天津二十五中高三开学考试)两人独立地破译一个密码,他们能译出的概率分别为、,则密码被译出的概率为(  )
A.
B.
C.
D.
14.(2020·贵州高二期末(文))从装有2个白球和3个黑球的口袋内任取两个球,那么下列事件中是互斥而不对立的事件是(

A.“恰有两个白球”与“恰有一个黑球”
B.“至少有一个白球”与“至少有一个黑球”
C.“都是白球”与“至少有一个黑球”
D.“至少有一个黑球”与“都是黑球”
15.(2020·全国高一课时练习)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为(

A.
B.
C.
D.
16.(2020·全国高三其他(理))为了解我国古代数学的辉煌成就,学校决定从《周髀算经》《九章算术》等10部古代数学专著中选择2部作为“数学文化”校本课程学习内容,已知这10部专著中有7部产生于魏晋南北朝时期.则所选2部专著中至多有一部是魏晋南北朝时期的专著的概率为(

A.
B.
C.
D.
17.(2020·河南南阳中学高二月考(理))某转播商转播一场排球比赛,比赛采取五局三胜制,即一方先获得三局胜利比赛就结束,已知比赛双方实力相当,且每局比赛胜负都是相互独立的,若每局比赛转播商可以获得20万元的收益,则转播商获利不低于80万元的概率是(

A.
B.
C.
D.
18.(2020·全国高三专题练习)我国古代数学名著《九章算术》中有“米谷粒分”题:粮仓开仓收粮,有人送来米1536石,验得米内夹谷,抽样取米一把,数得256粒内夹谷18粒,则这批米内夹谷约为(

A.108石
B.169石
C.237石
D.338石
19.(2020·四川省泸县第一中学高三开学考试(文))某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是(

A.62%
B.56%
C.46%
D.42%
20.(2020·四川棠湖中学高三二模(理))从装有若干个大小相同的红球、白球和黄球的袋中随机摸出1个球,摸到红球、白球和黄球的概率分别为,从袋中随机摸出一个球,记下颜色后放回,连续摸3次,则记下的颜色中有红有白,但没有黄的概率为(

A.
B.
C.
D.
21.(多选题)(2020·福建省武平县第一中学高二月考)下列对各事件发生的概率判断正确的是(

A.某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,那么该生在上学路上到第3个路口首次遇到红灯的概率为
B.三人独立地破译一份密码,他们能单独译出的概率分别为,,,假设他们破译密码是彼此独立的,则此密码被破译的概率为
C.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为
D.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是
22.(多选题)(2020·泰安市基础教育教学研究室其他)下列说法正确的是(

A.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一、二、三、四年级本科生人数之比为6:5:5:4,则应从一年级中抽取90名学生
B.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率为
C.已知变量x与y正相关,且由观测数据算得=3,=3.5,则由该观测数据算得的线性回归方程可能是=0.4x+2.3
D.从装有2个红球和2个黑球的口袋内任取2个球,至少有一个黑球与至少有一个红球是两个互斥而不对立的事件
23.(2020·河北石家庄二中高三月考(理))某公司共有职工8000名,从中随机抽取了100名,调查上?下班乘车所用时间,得下表
所用时间(分钟)
人数
公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘车时间t(分钟)的关系是其中表示不超过的最大整数.以样本频率为概率:
(1)估算公司每月用于路途补贴的费用总额(元);
(2)以样本频率作为概率,求随机选取四名职工,至少有两名路途补贴超过300元的概率.
24.(2020·上海高三专题练习)设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某1
h内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.
(1)求甲、乙、丙每台机器在这1
h内需要照顾的概率分别是多少?
(2)计算这1
h内至少有一台机器需要照顾的概率.
25.(2020·山东省实验中学高三月考)公元2020年春,我国湖北武汉出现了新型冠状病毒,人感染后会出现发热、咳嗽、气促和呼吸困难等,严重的可导致肺炎甚至危及生命.为了尽快遏制住病毒的传播,我国科研人员,在研究新型冠状病毒某种疫苗的过程中,利用小白鼠进行科学试验.为了研究小白鼠连续接种疫苗后出现症状的情况,决定对小白鼠进行做接种试验.该试验的设计为:①对参加试验的每只小白鼠每天接种一次;②连续接种三天为一个接种周期;③试验共进行3个周期.已知每只小白鼠接种后当天出现症状的概率均为,假设每次接种后当天是否出现症状与上次接种无关.
(1)若某只小白鼠出现症状即对其终止试验,求一只小白鼠至多能参加一个接种周期试验的概率;
(2)若某只小白鼠在一个接种周期内出现2次或3次症状,则在这个接种周期结束后,对其终止试验.设一只小白鼠参加的接种周期为,求的分布列及数学期望.
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)
同课章节目录