中小学教育资源及组卷应用平台
第52讲
古典概型
考情分析
1.理解古典概型及其概率计算公式;
2.会计算一些随机事件所包含的基本事件数及事件发生的概率.
知识梳理
1.基本事件的特点
(1)任何两个基本事件是互斥的.
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
2.古典概型
具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.
(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.
(2)每一个试验结果出现的可能性相同.
3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=.
4.古典概型的概率公式
P(A)=.
[微点提醒]
概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=?,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.
经典例题
考点一 基本事件及古典概型的判断
【例1】
袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.
(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?
(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?
解 (1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.
又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.
(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为,而白球有5个,
故一次摸球摸到白球的可能性为,
同理可知摸到黑球、红球的可能性均为,
显然这三个基本事件出现的可能性不相等,
故以颜色为划分基本事件的依据的概率模型不是古典概型.
规律方法 古典概型中基本事件个数的探求方法:
(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.
(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x,y)可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同.
(3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识.
考点二 简单的古典概型的概率
【例2】
(1)两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( )
A.
B.
C.
D.
(2)设袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为________.
解析 (1)两名同学分3本不同的书,基本事件有(0,3),(1a,2),(1b,2),(1c,2),(2,1a),(2,1b),(2,1c),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∴一人没有分到书,另一人分得3本书的概率p==.
(2)袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,基本事件总数n=6×6=36,取出此2球所得分数之和为3分,包含第一次抽到红球,第二次抽到黄球或者第一次抽到黄球,第二次抽到红球,基本事件个数m=2×3+3×2=12,所以取出此2球所得分数之和为3分的概率p===.
答案 (1)B (2)
规律方法 计算古典概型事件的概率可分三步:(1)计算基本事件总个数n;(2)计算事件A所包含的基本事件的个数m;(3)代入公式求出概率p.
考点三 古典概型的交汇问题 多维探究
角度1 古典概型与平面向量的交汇
【例3-1】
设平面向量a=(m,1),b=(2,n),其中m,n∈{1,2,3,4},记“a⊥(a-b)”为事件A,则事件A发生的概率为( )
A.
B.
C.
D.
解析 有序数对(m,n)的所有可能情况为4×4=16个,由a⊥(a-b)得m2-2m+1-n=0,即n=(m-1)2.由于m,n∈{1,2,3,4},故事件A包含的基本事件为(2,1)和(3,4),共2个,所以P(A)==.
答案 A
角度2 古典概型与解析几何的交汇
【例3-2】
将一颗骰子先后投掷两次分别得到点数a,b,则直线ax+by=0与圆(x-2)2+y2=2有公共点的概率为________.
解析 依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a,b)有6×6=36种,其中满足直线ax+by=0与圆(x-2)2+y2=2有公共点,即满足≤,即a≤b的数组(a,b)有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率为=.
答案
角度3 古典概型与函数的交汇
【例3-3】
已知函数f(x)=x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( )
A.
B.
C.
D.
解析 f′(x)=x2+2ax+b2,由题意知f′(x)=0有两个不等实根,
即Δ=4(a2-b2)>0,∴a>b,有序数对(a,b)所有结果为3×3=9种,其中满足a>b有(1,0),(2,0),(3,0),(2,1),(3,1),(3,2)共6种,故所求概率p==.
答案 D
角度4 古典概型与统计的交汇
【例3-4】
(2019·济宁模拟)某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.
(注:分组区间为[60,70),[70,80),[80,90),[90,100])
(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?
(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.
解 (1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45.
(2)因为样本容量与总体中的个体数的比是=,所以样本中包含的男生人数为30×=2,女生人数为45×=3.
则从5人中任意选取2人共有C=10种,抽取的2人中没有一名男生有C=3种,则至少有一名男生有C-C=7种.故至少有一名男生的概率为p=,即选取的2人中至少有一名男生的概率为.
规律方法 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:
(1)将题目条件中的相关知识转化为事件;
(2)判断事件是否为古典概型;
(3)选用合适的方法确定基本事件个数;
(4)代入古典概型的概率公式求解.
[方法技巧]
1.古典概型计算三步曲
第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A是什么,它包含的基本事件有多少个.
2.确定基本事件个数的方法
列举法、列表法、树状图法或利用排列、组合.
课时作业
1.(2020·山东潍坊·月考)算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如,在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65,若在个、十、百、千位档中随机选择一档拨上一颗下珠,再随机选择两个档位各拨一颗上珠,则所拨数字小于600的概率为(
)
A.
B.
C.
D.
【答案】D
【解析】在个、十、百、千位档中随机选择一档拨上一颗下珠,再随机选择两个档位各拨一颗上珠,所有的数有个,其中小于600的有个,
∴所求概率为.
2.(2020·山东省实验中学高三月考)公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”.《周髀算经》中记录着商高同周公的一段对话.商高说:“故折矩,勾广三,股修四,径隅五.”大意为“当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5”.以后人们就把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理.勾股数组是满足的正整数组.若在不超过10的正整数中,随机选取3个不同的数,则能组成勾股数组的概率是(
)
A.
B.
C.
D.
【答案】C
【解析】在不超过10的正整数中,随机选取3个不同的数,共有种组合方法,
能组成勾股数组的情况有和,
所以所求概率为.
3.(2020·宁夏高三其他(理))《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为(
)
A.
B.
C.
D.
【答案】C
【解析】有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作216个,
由正方体的结构及锯木块的方法,
可知一面带有红漆的木块是每个面的中间那16块,共有6×16=96个,
∴从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率:
p.
4.(2020·江西月考(理))生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.
为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须相邻安排的概率为(
)
A.
B.
C.
D.
【答案】B
【解析】由题意知基本事件总数,
“数”必须排在前两节,“礼”和“乐”必须相邻可以分两类安排:
“数”排在第一位,“礼”和“乐”两门课程相邻排课,则礼,乐相邻的位置有4个,考虑两者的顺序,有2种情况,
剩下的3个全排列,安排在其他三个位置,有种情况,故有种
“数”排第二位,
“礼”和“乐”两门课程相邻排课,则礼,乐相邻的位置有3个,考虑两者的顺序,有2种情况,剩下的3个全排列,安排在其他三个位置,有种情况,
则有种情况,
由分类加法原理知满足“数”必须排在前两节,“礼”和“乐”必须相邻安排共有种情况,
所以满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为.
5.(2020·云南高三月考(理))袋中共有完全相同的4只小球、编号为1,2,3,4,现从中任取2只小球,则取出的2只球编号之和是奇数的概率为(
)
A.
B.
C.
D.
【答案】D
【解析】解:在编号为1,2,3,4的小球中任取2只小球,则有,,,,,,共6种取法,
则取出的2只球编号之和是奇数的有,,,,共4种取法,
所以取出的2只球编号之和是奇数的概率为,故选:D.
6.(2020·辽宁丹东·高三期末(文))从分别写有的张卡片中随机抽取张,放回后再随机抽取张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为(
)
A.
B.
C.
D.
【答案】D
【详解】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,
基本事件总数n=5×5=25,
抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:
(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),
共有m=10个基本事件,
∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=
7.(2020·江苏高三月考)若从甲、乙、丙、丁4人中选出3名代表参加学校会议,则甲被选中的概率为(
)
A.
B.
C.
D.
【答案】D
【解析】任选3名代表的所有基本事件为:甲乙丙,甲乙丁,甲丙丁,乙丙丁,共4个,基本含有甲的事件有3个,∴所求概率为.
8.(2020·辽宁高三月考)《三十六计》是中华民族珍贵的文化遗产之一,是一部传习久远的兵法奇书,与《孙子兵法》合称我国古代兵法谋略学的双壁.三十六计共分胜战计?敌战计?攻战计?混战计?并战计?败战计六套,每一套都包含六计,合三十六个计策,如果从这36个计策中任取2个计策,则这2个计策都来自同一套的概率为(
)
A.
B.
C.
D.
【答案】C
【解析】解:由已知从这36个计策中任取2个计策总共有种,其中2个计策都来自同一套的有种,
故所求概率.
9.(2020·河南高三月考(理))2019年北京世园会的吉祥物“小萌芽”“小萌花”是一对代表着生命与希望、勤劳与美好、活泼可爱的园艺小兄妹.造型创意来自东方文化中百子图的“吉祥娃娃”,通过头饰、道具、服装创意的巧妙组合,被赋予了普及园艺知识、传播绿色理念的特殊使命.现从5张分别印有“小萌芽”“小萌花”“牡丹花”“菊花”“杜鹃花”的这5个图案的卡片(卡片的形状、大小、质地均相同)中随机选取3张,则“小萌芽”和“小萌花”卡片都在内的概率为(
)
A.
B.
C.
D.
【答案】B
【解析】给印有“小萌芽”“小萌花”“牡丹花”“菊花”“杜鹃花”的这5个图案的卡片分别编号,记作,,,,,
从中抽取三张,所包含的基本事件有:,,,,,,,,,,共个;
则“小萌芽”和“小萌花”卡片都在内所包含的基本事件有:,,,共个;
因此所求的概率为.
10.(2020·福建漳州·高三其他(文))由共青团中央宣传部、中共山东省委宣传部、共青团山东省委、山东广播电视台联合出品的《国学小名士》第三季于2019年11月24日晚在山东卫视首播.本期最精彩的节目是的飞花令:出题者依次给出所含数字3.141592653……答题者则需要说出含有此数字的诗句.雷海为、杨强、马博文、张益铭与飞花令少女贺莉然同场,赛况激烈让人屏住呼吸,最终的飞花令突破204位.某校某班级开元旦联欢会,同学们也举行了一场的飞花令,为了增加趣味性,他们的规则如下:答题者先掷两个骰子,得到的点数分别记为,再取出的小数点后第位和第位的数字,然后说出含有这两个数字的一个诗句,若能说出则可获得奖品.按照这个规则,取出的两个数字相同的概率为(
)
A.
B.
C.
D.
【答案】D
【解析】取出的小数点后第位和第位的数字,基本事件共有36个:
1
4
1
5
9
2
1
(1,1)
(1,4)
(1,1)
(1,5)
(1,9)
(1,2)
4
(4,1)
(4,4)
(4,1)
(4,5)
(4,9)
(4,2)
1
(1,1)
(1,4)
(1,1)
(1,5)
(1,9)
(1,2)
5
(5,1)
(5,4)
(5,1)
(5,5)
(5,9)
(5,2)
9
(9,1)
(9,4)
(9,1)
(9,5)
(9,9)
(9,2)
2
(2,1)
(2,4)
(2,1)
(2,5)
(2,9)
(2,2)
取出的两个数字相同的基本事件共有8个:,
其中括号内的第一个数表示第位的取值,第二个数表示第位的取值,
所以取出的两个数字相同的概率为,故选:D.
11.(2020·全国高三月考(文))从3,5,7,9,10中任取3个数作为边长,不能够围成三角形的概率为(
)
A.
B.
C.
D.
【答案】A
【解析】依题意,从3,5,7,9,10中任取3个数作为边长,所包含的情况有,,
,,,,,,,,
共个基本事件;其中不能围成三角形的有,,,共个基本事件;
故所求概率.
12.(2020·全国高三月考)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”.下图是在“赵爽弦图”的基础上创作出的一个“数学风车”,其中正方形内部为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的.我们将图中阴影所在的四个三角形称为同一片“风叶”的概率为(
)
A.
B.
C.
D.
【答案】A
【解析】由题意,从“数学风车”的八个顶点中任取两个顶点的基本事件有种,
其中这两个顶点取自同一片“风叶”的基本事件有,
根据古典概型的概率计算公式,可得所求概率.
13.(2020·江苏南通·月考)《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有2根阳线和1根阴线的概率为(
)
A.
B.
C.
D.
【答案】C
【解析】先算任取一卦的所有等可能结果共8卦,
其中恰有2根阳线和1根阴线的基本事件有3卦,
∴概率为.
14.(2020·安徽高三月考(理))疫情期间部分中小学进行在线学习,某市教育局为了解学生线上学习情况,准备从10所学校(其中6所中学4所小学)随机选出3所进行调研,其中中学与小学同时被选中的概率为(
)
A.
B.
C.
D.
【答案】C
【解析】从10所学校(其中6所中学4所小学)随机选出3所,所包含的基本事件共个,
其中中学与小学被选中包含个基本事件,
故所求概率为.
15.(2020·四川巴中·高三零模(文))2013年华人数学家张益唐证明了孪生素数(素数即质数)猜想的一个弱化形式.素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷个素数,使得是素数,素数对称为孪生素数.则从不超过15的素数中任取两个素数,这两个素数组成孪生素数对的概率为(
)
A.
B.
C.
D.
【答案】C
【解析】不超过15的素数有2,3,5,7,11,13,共6个,
则从不超过15的素数中任取两个素数共有种
根据素数对称为孪生素数,
则由不超过15的素数组成的孪生素数对为(3,5),(5,7),(11,13),
共有3组,
能够组成孪生素数的概率为
16.(2020·四川巴中·高三零模(理))2013年华人数学家张益唐证明了孪生素数(素数即质数)猜想的一个弱化形式.素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷个素数,使得是素数,素数对称为孪生素数.则从不超过20的素数中任取两个素数,这两个素数组成孪生素数对的概率为(
)
A.
B.
C.
D.
【答案】C
【解析】解:依题意,20以内的素数有共有8个,从中选两个共包含个基本事件,
而20以内的孪生素数有,,,共四对,包含4个基本事件,
所以从20以内的素数中任取两个,
其中能构成孪生素数的概率为.
17.(2020·全国高三其他(文))从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为(
)
A.
B.
C.
D.
【答案】B
【解析】从写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,基本事件的个数为,抽得的第一张卡片上的数大于第二张卡片上的数的基本事件为,,,,,共6个,因此抽得的第一张卡片上的数大于第二张卡片上的数的概率为.
18.(2020·全国高三其他(理))2019年成都世界警察与消防员运动会期间,需安排甲、乙、丙、丁四名志愿者去三个场馆参与服务工作,要求每个场馆至少一人,则甲乙被安排到同一个场馆的概率为(
)
A.
B.
C.
D.
【答案】C
【解析】由题意将甲乙看成一个整体,满足要求的安排方式种类有,总的安排方式的种类有,所以甲乙被安排到同一个场馆的概率为.
19.(2020·湖南高三月考(文))设为邻边不相等的矩形的对角线交点,在,,,,中任取3点,则取到的3点构成直角三角形的概率为(
)
A.
B.
C.
D.
【答案】C
【解析】如图,从,,,,,这5个点中任取3个有,,,,,,,,,共10种不同取法,取到的3点构成直角三角形:,,,共4种情况,由古典概型的概率计算公式知,取到的3点构成直角三角形的概率为,
故选:C.
20.(2020·沙坪坝·重庆一中高三其他(文))小王到重庆游玩,计划用两天的时间打卡“朝天门”、“解放碑”、“洪崖洞”、“磁器口”、“南山一棵树”五个网红景点.若将这五个景点随机安排在两天时间里,第一天游览两个,第二天游览三个,则“朝天门”和“解放碑”恰好在同一天游览的概率为(
)
A.
B.
C.
D.
【答案】B
【解析】五个网红景点分别记为,则两天的游览安排有,,,,,,,,,,共10种方法,
其中“朝天门”和“解放碑”(即)恰好在同一天游览的情况有4种,
故“朝天门”和“解放碑”恰好在同一天游览的概率为.
21.(2020·河南洛阳·高三月考(文))我国的旅游资源丰富,是人们假期旅游的好去处,小五现从大理、黄果树瀑布、阳朔、张家界和青海湖中任选两处去旅游,则恰好选中青海湖的概率为______.
【答案】
【解析】依次将大理、黄果树瀑布、阳朔、张家界和青海湖编号为1,2,3,4,5,
则从中任选两处的所有可能情况有,,,,,,,,,,共10种,
恰好选中青海湖的情况有,,,,共4种,
则由古典概型的概率公式得所求概率为.
22.(2020·广西南宁三中高三其他(理))《西游记》?《三国演义》?《水浒传》?《红楼梦》是我国古典小说四大名著.若在这四大名著中,任取2种进行阅读,则取到《红楼梦》的概率为________.
【答案】
【解析】4本名著选两本共有种,选取的两本中含有《红楼梦》的共有种,
所以任取2种进行阅读,则取到《红楼梦》的概率为:.
23.(2020·陕西高三零模(文))某胸科医院感染科有名男医生和名女医生,现需要这名医生中任意抽取名医生成立一个临时新型冠状病毒诊治小组抽取的名医生恰好都是男医生的概率_____.
【答案】
【解析】记名男医生分别为、、,名女医生分别为、,
从这名医生中任意抽取名医生的所有可能结果为:、、、、、、、、、,共种,
其中抽取的名医生恰好都是男医生的可能结果有、、,共种,
所以所求概率为.
24.(2020·沙坪坝·重庆南开中学高三月考)2020年国庆档上映的影片有《夺冠》,《我和我的家乡》,《一点就到家》,《急先锋》,《木兰·横空出世》,《姜子牙》,其中后两部为动画片.甲、乙两位同学都跟随家人观影,甲观看了六部中的两部,乙观看了六部中的一部,则甲、乙两人观看了同一部动画片的概率为________.
【答案】
【解析】甲观看了六部中的两部共有种,
乙观看了六部中的一部共有种,
则甲、乙两人观影共有种,
则甲、乙两人观看同一部动画片共有种,
所以甲、乙两人观看了同一部动画片的概率为,故答案为:
25.(2020·北京高三其他)2020年岁末年初,“新冠肺炎”疫情以其汹汹袭来之势席卷了我国的武汉,在这关键的时刻,在党中央的正确指导下,以巨大的魄力,惊人的壮举,勇敢的付出,及时阻断了疫情的传播,让这片土地成为了世界上最温暖的家园;通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.如表统计了2月12日到2月18日连续七天全国的治愈人数:(单位:例)
日期
12
13
14
15
16
17
18
治愈人数
1171
1081
1373
1323
1425
1701
1824
请根据以上信息,回答下列问题:
(Ⅰ)记前四天治愈人数的平均数和方差分别为和,后三天治愈人数的平均数和方差分别为和,判断与,与的大小(直接写出结论);
(Ⅱ)从这七天中任取连续的两天,则后一天的治愈人数比前一天的治愈人数多于200例的概率;
(Ⅲ)设集合,表示2月日的治愈人数,,13,,,从集合中任取两个元素,设其中满足的个数为,求的分布列和数学期望.
【解析】解:(Ⅰ)记前四天治愈人数的平均数和方差分别为和,
后三天治愈人数的平均数和方差分别为和,
则,.
(Ⅱ)设事件:“从这七天中任取连续的两天,则后一天的治愈人数比前一天的治愈人数多
于
200
例”.
从这七天中任选取连续的两天,共有
6
种选法,
其中
13
日和
14
日,16
日和
17
日符合要求,
所以从这七天中任取连续的两天,则后一天的治愈人数比前一天的治愈人数多于200例的概率为:
.
(Ⅲ)设集合,表示2月日的治愈人数,,13,,,
从集合中任取两个元素,设其中满足的个数为,由题意可知
的可能取值为
0,1,2,
,
,
,
的分布列为:
0
1
2
数学期望.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第52讲
古典概型
考情分析
1.理解古典概型及其概率计算公式;
2.会计算一些随机事件所包含的基本事件数及事件发生的概率.
知识梳理
1.基本事件的特点
(1)任何两个基本事件是互斥的.
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
2.古典概型
具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.
(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.
(2)每一个试验结果出现的可能性相同.
3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=.
4.古典概型的概率公式
P(A)=.
[微点提醒]
概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=?,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.
经典例题
考点一 基本事件及古典概型的判断
【例1】
袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.
(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?
(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?
解 (1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.
又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.
(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为,而白球有5个,
故一次摸球摸到白球的可能性为,
同理可知摸到黑球、红球的可能性均为,
显然这三个基本事件出现的可能性不相等,
故以颜色为划分基本事件的依据的概率模型不是古典概型.
规律方法 古典概型中基本事件个数的探求方法:
(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.
(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x,y)可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同.
(3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识.
考点二 简单的古典概型的概率
【例2】
(1)两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( )
A.
B.
C.
D.
(2)设袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为________.
解析 (1)两名同学分3本不同的书,基本事件有(0,3),(1a,2),(1b,2),(1c,2),(2,1a),(2,1b),(2,1c),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∴一人没有分到书,另一人分得3本书的概率p==.
(2)袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,基本事件总数n=6×6=36,取出此2球所得分数之和为3分,包含第一次抽到红球,第二次抽到黄球或者第一次抽到黄球,第二次抽到红球,基本事件个数m=2×3+3×2=12,所以取出此2球所得分数之和为3分的概率p===.
答案 (1)B (2)
规律方法 计算古典概型事件的概率可分三步:(1)计算基本事件总个数n;(2)计算事件A所包含的基本事件的个数m;(3)代入公式求出概率p.
考点三 古典概型的交汇问题 多维探究
角度1 古典概型与平面向量的交汇
【例3-1】
设平面向量a=(m,1),b=(2,n),其中m,n∈{1,2,3,4},记“a⊥(a-b)”为事件A,则事件A发生的概率为( )
A.
B.
C.
D.
解析 有序数对(m,n)的所有可能情况为4×4=16个,由a⊥(a-b)得m2-2m+1-n=0,即n=(m-1)2.由于m,n∈{1,2,3,4},故事件A包含的基本事件为(2,1)和(3,4),共2个,所以P(A)==.
答案 A
角度2 古典概型与解析几何的交汇
【例3-2】
将一颗骰子先后投掷两次分别得到点数a,b,则直线ax+by=0与圆(x-2)2+y2=2有公共点的概率为________.
解析 依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a,b)有6×6=36种,其中满足直线ax+by=0与圆(x-2)2+y2=2有公共点,即满足≤,即a≤b的数组(a,b)有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率为=.
答案
角度3 古典概型与函数的交汇
【例3-3】
已知函数f(x)=x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( )
A.
B.
C.
D.
解析 f′(x)=x2+2ax+b2,由题意知f′(x)=0有两个不等实根,
即Δ=4(a2-b2)>0,∴a>b,有序数对(a,b)所有结果为3×3=9种,其中满足a>b有(1,0),(2,0),(3,0),(2,1),(3,1),(3,2)共6种,故所求概率p==.
答案 D
角度4 古典概型与统计的交汇
【例3-4】
(2019·济宁模拟)某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.
(注:分组区间为[60,70),[70,80),[80,90),[90,100])
(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?
(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.
解 (1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45.
(2)因为样本容量与总体中的个体数的比是=,所以样本中包含的男生人数为30×=2,女生人数为45×=3.
则从5人中任意选取2人共有C=10种,抽取的2人中没有一名男生有C=3种,则至少有一名男生有C-C=7种.故至少有一名男生的概率为p=,即选取的2人中至少有一名男生的概率为.
规律方法 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:
(1)将题目条件中的相关知识转化为事件;
(2)判断事件是否为古典概型;
(3)选用合适的方法确定基本事件个数;
(4)代入古典概型的概率公式求解.
[方法技巧]
1.古典概型计算三步曲
第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A是什么,它包含的基本事件有多少个.
2.确定基本事件个数的方法
列举法、列表法、树状图法或利用排列、组合.
课时作业
1.(2020·山东潍坊·月考)算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如,在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65,若在个、十、百、千位档中随机选择一档拨上一颗下珠,再随机选择两个档位各拨一颗上珠,则所拨数字小于600的概率为(
)
A.
B.
C.
D.
2.(2020·山东省实验中学高三月考)公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”.《周髀算经》中记录着商高同周公的一段对话.商高说:“故折矩,勾广三,股修四,径隅五.”大意为“当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5”.以后人们就把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理.勾股数组是满足的正整数组.若在不超过10的正整数中,随机选取3个不同的数,则能组成勾股数组的概率是(
)
A.
B.
C.
D.
3.(2020·宁夏高三其他(理))《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为(
)
A.
B.
C.
D.
4.(2020·江西月考(理))生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.
为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须相邻安排的概率为(
)
A.
B.
C.
D.
5.(2020·云南高三月考(理))袋中共有完全相同的4只小球、编号为1,2,3,4,现从中任取2只小球,则取出的2只球编号之和是奇数的概率为(
)
A.
B.
C.
D.
6.(2020·辽宁丹东·高三期末(文))从分别写有的张卡片中随机抽取张,放回后再随机抽取张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为(
)
A.
B.
C.
D.
7.(2020·江苏高三月考)若从甲、乙、丙、丁4人中选出3名代表参加学校会议,则甲被选中的概率为(
)
A.
B.
C.
D.
8.(2020·辽宁高三月考)《三十六计》是中华民族珍贵的文化遗产之一,是一部传习久远的兵法奇书,与《孙子兵法》合称我国古代兵法谋略学的双壁.三十六计共分胜战计?敌战计?攻战计?混战计?并战计?败战计六套,每一套都包含六计,合三十六个计策,如果从这36个计策中任取2个计策,则这2个计策都来自同一套的概率为(
)
A.
B.
C.
D.
9.(2020·河南高三月考(理))2019年北京世园会的吉祥物“小萌芽”“小萌花”是一对代表着生命与希望、勤劳与美好、活泼可爱的园艺小兄妹.造型创意来自东方文化中百子图的“吉祥娃娃”,通过头饰、道具、服装创意的巧妙组合,被赋予了普及园艺知识、传播绿色理念的特殊使命.现从5张分别印有“小萌芽”“小萌花”“牡丹花”“菊花”“杜鹃花”的这5个图案的卡片(卡片的形状、大小、质地均相同)中随机选取3张,则“小萌芽”和“小萌花”卡片都在内的概率为(
)
A.
B.
C.
D.
10.(2020·福建漳州·高三其他(文))由共青团中央宣传部、中共山东省委宣传部、共青团山东省委、山东广播电视台联合出品的《国学小名士》第三季于2019年11月24日晚在山东卫视首播.本期最精彩的节目是的飞花令:出题者依次给出所含数字3.141592653……答题者则需要说出含有此数字的诗句.雷海为、杨强、马博文、张益铭与飞花令少女贺莉然同场,赛况激烈让人屏住呼吸,最终的飞花令突破204位.某校某班级开元旦联欢会,同学们也举行了一场的飞花令,为了增加趣味性,他们的规则如下:答题者先掷两个骰子,得到的点数分别记为,再取出的小数点后第位和第位的数字,然后说出含有这两个数字的一个诗句,若能说出则可获得奖品.按照这个规则,取出的两个数字相同的概率为(
)
A.
B.
C.
D.
11.(2020·全国高三月考(文))从3,5,7,9,10中任取3个数作为边长,不能够围成三角形的概率为(
)
A.
B.
C.
D.
12.(2020·全国高三月考)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”.下图是在“赵爽弦图”的基础上创作出的一个“数学风车”,其中正方形内部为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的.我们将图中阴影所在的四个三角形称为同一片“风叶”的概率为(
)
A.
B.
C.
D.
13.(2020·江苏南通·月考)《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有2根阳线和1根阴线的概率为(
)
A.
B.
C.
D.
14.(2020·安徽高三月考(理))疫情期间部分中小学进行在线学习,某市教育局为了解学生线上学习情况,准备从10所学校(其中6所中学4所小学)随机选出3所进行调研,其中中学与小学同时被选中的概率为(
)
A.
B.
C.
D.
15.(2020·四川巴中·高三零模(文))2013年华人数学家张益唐证明了孪生素数(素数即质数)猜想的一个弱化形式.素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷个素数,使得是素数,素数对称为孪生素数.则从不超过15的素数中任取两个素数,这两个素数组成孪生素数对的概率为(
)
A.
B.
C.
D.
16.(2020·四川巴中·高三零模(理))2013年华人数学家张益唐证明了孪生素数(素数即质数)猜想的一个弱化形式.素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷个素数,使得是素数,素数对称为孪生素数.则从不超过20的素数中任取两个素数,这两个素数组成孪生素数对的概率为(
)
A.
B.
C.
D.
17.(2020·全国高三其他(文))从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为(
)
A.
B.
C.
D.
18.(2020·全国高三其他(理))2019年成都世界警察与消防员运动会期间,需安排甲、乙、丙、丁四名志愿者去三个场馆参与服务工作,要求每个场馆至少一人,则甲乙被安排到同一个场馆的概率为(
)
A.
B.
C.
D.
19.(2020·湖南高三月考(文))设为邻边不相等的矩形的对角线交点,在,,,,中任取3点,则取到的3点构成直角三角形的概率为(
)
A.
B.
C.
D.
20.(2020·沙坪坝·重庆一中高三其他(文))小王到重庆游玩,计划用两天的时间打卡“朝天门”、“解放碑”、“洪崖洞”、“磁器口”、“南山一棵树”五个网红景点.若将这五个景点随机安排在两天时间里,第一天游览两个,第二天游览三个,则“朝天门”和“解放碑”恰好在同一天游览的概率为(
)
A.
B.
C.
D.
21.(2020·河南洛阳·高三月考(文))我国的旅游资源丰富,是人们假期旅游的好去处,小五现从大理、黄果树瀑布、阳朔、张家界和青海湖中任选两处去旅游,则恰好选中青海湖的概率为______.
22.(2020·广西南宁三中高三其他(理))《西游记》?《三国演义》?《水浒传》?《红楼梦》是我国古典小说四大名著.若在这四大名著中,任取2种进行阅读,则取到《红楼梦》的概率为________.
23.(2020·陕西高三零模(文))某胸科医院感染科有名男医生和名女医生,现需要这名医生中任意抽取名医生成立一个临时新型冠状病毒诊治小组抽取的名医生恰好都是男医生的概率_____.
24.(2020·沙坪坝·重庆南开中学高三月考)2020年国庆档上映的影片有《夺冠》,《我和我的家乡》,《一点就到家》,《急先锋》,《木兰·横空出世》,《姜子牙》,其中后两部为动画片.甲、乙两位同学都跟随家人观影,甲观看了六部中的两部,乙观看了六部中的一部,则甲、乙两人观看了同一部动画片的概率为________.
25.(2020·北京高三其他)2020年岁末年初,“新冠肺炎”疫情以其汹汹袭来之势席卷了我国的武汉,在这关键的时刻,在党中央的正确指导下,以巨大的魄力,惊人的壮举,勇敢的付出,及时阻断了疫情的传播,让这片土地成为了世界上最温暖的家园;通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.如表统计了2月12日到2月18日连续七天全国的治愈人数:(单位:例)
日期
12
13
14
15
16
17
18
治愈人数
1171
1081
1373
1323
1425
1701
1824
请根据以上信息,回答下列问题:
(Ⅰ)记前四天治愈人数的平均数和方差分别为和,后三天治愈人数的平均数和方差分别为和,判断与,与的大小(直接写出结论);
(Ⅱ)从这七天中任取连续的两天,则后一天的治愈人数比前一天的治愈人数多于200例的概率;
(Ⅲ)设集合,表示2月日的治愈人数,,13,,,从集合中任取两个元素,设其中满足的个数为,求的分布列和数学期望.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)