第2课时 平方差公式的应用
北师版七年级数学下册
(1)(3m + 1)(3m - 1); (2)(x2 + y)(x2 - y).
解 (1)(3m + 1)(3m - 1)
= (3m)2 - 1
= 9m2 - 1.
(2)(x2 + y)(x2 - y)
= (x2)2 - y2
= x4 - y2.
新课导入
如图,边长为 a 的大正方形中有一个边长为 b 的小正方形.
(1)请表示图中阴影部
分的面积.
a
b
a2 – b2
新课探究
(2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗?
a
b
(a + b)(a – b)
(3)比较(1)(2) 的结果, 你能验证平方差公式吗 ?
a
b
a
b
阴影部分的面积相等:a2 – b2 =(a + b)(a – b)
想一想
(1)计算下列各组算式, 并观察它们的共同特点:
7×9 =
8×8 =
11×13 =
12×12 =
79×81 =
80×80 =
63
64
143
144
6399
6400
你发现了什么?
(a – 1)(a + 1)= a2 – 1
例 3 用平方差公式进行计算:
(1)103×97; (2)118×122
解(1)103×97
=(100 + 3)(100 – 3)
= 1002 – 32
= 9 991
解(2)118×122
=(120 – 2)(120 + 2)
= 1202 – 22
= 14 396
练习
(1)1 007 ×993 ; (2)108×112;
解(1) 1 007 ×993 =(1000 + 7)(1000 – 7)
= 10002 – 72
= 999 951
(2) 108×112 =(110 – 2)(110 + 2)
= 1102 – 22
= 12 096
例 3 计算:
(1)a2(a + b) (a – b) + a2b2;
(2)(2x – 5) (2x + 5) – 2x(2x – 3).
解(1)a2(a + b) (a – b) + a2b2;
= a2(a2 – b2) + a2b2;
= a4 – a2b2 + a2b2;
= a4
解(2)(2x – 5) (2x + 5) – 2x(2x – 3)
= (2x)2 – 25 – (4x2 – 6x)
= 4x2 – 25 – 4x2 + 6x
= 6x – 25
练习
(x + 2y) (x – 2y) + (x + 1) (x – 1)
解 (x + 2y) (x – 2y) + (x + 1) (x – 1)
= x2 – (2y)2 + (x2 – 1)
= x2 – 4y2 + x2 – 1
= 2x2 – 4y2 – 1
随堂演练
1.(a – 2)(a + 2)(a2 + 4)
=(a2 – 4)(a2 + 4)
= a4 – 16
2.(x + y + 1)(x – y – 1)
= [ x +(y + 1)][ x –(y + 1)]
= x2 – (y + 1)2
= x2 – y2 – 2y – 1
3. (a + b + c) (a + b – c)
= (a + b)2 – c2
= a2 + 2ab + b2 – c2
4. 用简便方法计算:
20152 – 2014×2016
解:原式 = 20152 – (2015 – 1)×(2015 + 1)
= 20152 – (20152 – 12)
= 1
(x – y)(x + y)(x2 + y2)(x4 + y4 )
5. 化简.
=(x2 – y2)(x2 + y2)(x4 + y4 )
=(x4 – y4)(x4 + y4 )
= x8 – y8
课后作业
1.完成课本P22页的练习,
2.完成练习册本课时的习题.