命题探秘二 高考中的圆锥曲线问题
第1课时 圆锥曲线中的定点、定值问题
技法阐释
求解圆锥曲线中的定点问题的两种方法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立直线系方程,一般将题目中给出的曲线方程(包含直线方程)中的常量当成变量,将变量x,y当成常量,将原方程转化为kf
(x,y)+g(x,y)=0的形式(k是原方程中的常量);②根据直线过定点时与参数没有关系(即直线系方程对任意参数都成立),得到方程组③以②中方程组的解为坐标的点就是直线所过的定点,若定点具备一定的限制条件,则可以特殊解决.
技法一 直接推理解决直线过定点问题
[典例1](2020·临沂、枣庄二模联考)已知椭圆C:+=1(a>b>0)的离心率为,其左、右焦点分别为F1,F2,点P为坐标平面内的一点,且||=,·=-,O为坐标原点.
(1)求椭圆C的方程;
(2)设M为椭圆C的左顶点,A,B是椭圆C上两个不同的点,直线MA,MB的倾斜角分别为α,β,且α+β=.证明:直线AB恒过定点,并求出该定点的坐标.
[思维流程]
[解] (1)设P点坐标为(x0,y0),F1(-c,0),F2(c,0),
则=(-c-x0,-y0),=(c-x0,-y0).
由题意得
解得c2=3,∴c=.
又e==,∴a=2.
∴b2=a2-c2=1.
∴所求椭圆C的方程为+y2=1.
(2)设直线AB方程为y=kx+m,A(x1,y1),B(x2,y2).
联立方程消去y得
(4k2+1)x2+8kmx+4m2-4=0.
∴x1+x2=-,x1x2=.
又由α+β=,∴tan
α·tan
β=1,
设直线MA,MB斜率分别为k1,k2,则k1k2=1,
∴·=1,
即(x1+2)(x2+2)=y1y2.
∴(x1+2)(x2+2)=(kx1+m)(kx2+m),
∴(k2-1)x1x2+(km-2)(x1+x2)+m2-4=0,
∴(k2-1)+(km-2)+m2-4=0,
化简得20k2-16km+3m2=0,
解得m=2k,或m=k.
当m=2k时,y=kx+2k,过定点(-2,0),不合题意(舍去).
当m=k时,y=kx+k,过定点,
∴直线AB恒过定点.
点评:动直线l过定点问题的基本思路
设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).
技法二 直接推理解决曲线过定点问题
[典例2] (2019·北京高考)已知抛物线C:x2=-2py经过点(2,-1).
(1)求抛物线C的方程及其准线方程;
(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=-1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.
[思维流程]
[解] (1)由抛物线C:x2=-2py经过点(2,-1),得p=2.
所以抛物线C的方程为x2=-4y,其准线方程为y=1.
(2)证明:抛物线C的焦点为F(0,-1),设直线l的方程为y=kx-1(k≠0).
由
得x2+4kx-4=0.
设M,N,则x1x2=-4.
直线OM的方程为y=x.
令y=-1,得点A的横坐标xA=-.
同理得点B的横坐标xB=-.
设点D(0,n),
则=,=,
·=+(n+1)2
=+(n+1)2
=+(n+1)2=-4+(n+1)2.
令·=0,即-4+(n+1)2=0,则n=1或n=-3.
综上,以AB为直径的圆经过y轴上的定点(0,1)和(0,-3).
点评:抓住圆的几何特征:“直径所对的圆周角为90°”,巧用向量·=0求得定点坐标,学习中应体会向量解题的工具性.
技法三 定直线的方程问题
[典例3] 已知抛物线C:x2=2py(p>0)的焦点为F,过F且斜率为1的直线与C交于A,B两点,|AB|=8.
(1)求抛物线C的方程;
(2)过点D(1,2)的直线l交C于点M,N,点Q为MN的中点,QR⊥x轴交C于点R,且=.证明:动点T在定直线上.
[思维流程]
[解] (1)设A(x1,y1),B(x2,y2).
因为F,所以过F且斜率为1的直线的方程为y=x+.
由消去y并整理,得x2-2px-p2=0,易知Δ>0.
则x1+x2=2p,y1+y2=x1+x2+p=3p,
所以|AB|=y1+y2+p=4p=8,解得p=2.
于是抛物线C的方程为x2=4y.
(2)证明:法一:易知直线l的斜率存在,设l的方程为y=k(x-1)+2,Q(x0,y0),M,N.
由消去y并整理,得x2-4kx+4k-8=0.
则Δ=(-4k)2-4(4k-8)=16(k2-k+2)>0,
x3+x4=4k,x3x4=4k-8,
所以x0==2k,y0=k(x0-1)+2=2k2-k+2,
即Q(2k,2k2-k+2).
由点R在曲线C上,QR⊥x轴,且=,
得R(2k,k2),R为QT的中点,所以T(2k,k-2).
因为2k-2(k-2)-4=0,
所以动点T在定直线x-2y-4=0上.
法二:设T(x,y),M,N.
由得(x3+x4)(x3-x4)=4(y3-y4),
所以=.
设Q(x,y5),则直线MN的斜率k=,
又=k,点Q的横坐标x=,
所以=,所以y5=x(x-1)+2.
由=知点R为QT的中点,所以R.
又点R在C上,将代入C的方程得x2=2(y5+y),即-x+4+2y=0,
所以动点T在定直线x-2y-4=0上.
点评:本题第(2)问给出了探求圆锥曲线中的定直线问题的两种方法:方法一是参数法,即先利用题设条件探求出动点T的坐标(包含参数),再消去参数,即得动点T在定直线上;方法二是相关点法,即先设出动点T的坐标为(x,y),根据题设条件得到已知曲线上的动点R的坐标,再将动点R的坐标代入已知的曲线方程,即得动点T在定直线上.
技法四 直接推理解决定值问题
[典例4] 在平面直角坐标系xOy中,已知椭圆C:+y2=1,点P(x1,y1),Q(x2,y2)是椭圆C上两个动点,直线OP,OQ的斜率分别为k1,k2,若m=,n=,m·n=0.
(1)求证:k1·k2=-;
(2)试探求△OPQ的面积S是不是为定值,并说明理由.
[思维流程]
[解] (1)证明:∵k1,k2均存在,∴x1x2≠0.
又m·n=0,∴+y1y2=0,即=-y1y2,
∴k1·k2==-.
(2)①当直线PQ的斜率不存在,即x1=x2,y1=-y2时,由=-,得-y=0.
∵点P(x1,y1)在椭圆上,∴+y=1,
∴|x1|=,|y1|=.∴S△POQ=|x1||y1-y2|=1.
②当直线PQ的斜率存在时,设直线PQ的方程为y=kx+b.
联立得方程组
消去y并整理得(4k2+1)x2+8kbx+4b2-4=0,
其中Δ=(8kb)2-4(4k2+1)(4b2-4)=16(1+4k2-b2)>0,即b2<1+4k2.
∴x1+x2=,x1x2=.
∵+y1y2=0,
∴+(kx1+b)(kx2+b)=0,得2b2-4k2=1(满足Δ>0).
∴S△POQ=··|PQ|=|b|=2|b|=1.
综合①②知△POQ的面积S为定值1.
点评:圆锥曲线中的定值问题的常见类型及解题策略
(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;
(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;
(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.
PAGE第2课时 圆锥曲线中的范围、最值问题
技法阐释
圆锥曲线中的范围、最值问题的求解常用的三种方法(1)函数法:用其他变量表示该参数,建立函数关系,利用求函数的单调性求解.(2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数范围.(3)判别式法:建立关于某变量的一元二次方程,利用判别式Δ求参数的范围.
高考示例
思维过程
(2019·全国卷Ⅱ)已知点A(-2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为-.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连接QE并延长交C于点G.①证明:△PQG是直角三角形;②求△PQG面积的最大值.
技法一 判别式法求范围
[典例1] 已知椭圆的一个顶点A(0,-1),焦点在x轴上,离心率为.
(1)求椭圆的标准方程;
(2)设直线y=kx+m(k≠0)与椭圆交于不同的两点M,N.当|AM|=|AN|时,求m的取值范围.
[思维流程]
[解] (1)设椭圆的标准方程为+=1(a>b>0),
联立解得
故椭圆的标准方程为+y2=1.
(2)设P(x0,y0)为弦MN的中点,M(x1,y1),N(x2,y2).
联立得(4k2+1)x2+8kmx+4(m2-1)=0.
则x1+x2=,x1x2=.
Δ=(8km)2-16(4k2+1)(m2-1)>0,
所以m2<1+4k2.
①
所以x0==-,y0=kx0+m=.
所以kAP==-.
又|AM|=|AN|,所以AP⊥MN,
则-=-,即3m=4k2+1.
②
把②代入①得m2<3m,解得0<m<3.
由②得k2=>0,解得m>.
综上可知,m的取值范围为.
点评:本例在求解中巧用|AM|=|AN|得出AP⊥MN,从而建立m与k的等量关系,回代由判别式Δ>0得出的m与k的不等关系,进而得出参数m的取值范围.
技法二 利用函数性质法求最值(范围)
[典例2] 已知直线l:x-y+1=0与焦点为F的抛物线C:y2=2px(p>0)相切.
(1)求抛物线C的方程;
(2)过焦点F的直线m与抛物线C分别相交于A,B两点,求A,B两点到直线l的距离之和的最小值.
[思维流程]
[解] (1)∵直线l:x-y+1=0与抛物线C:y2=2px(p>0)相切,
联立消去x得y2-2py+2p=0,从而Δ=4p2-8p=0,解得p=2或p=0(舍).
∴抛物线C的方程为y2=4x.
(2)由于直线m的斜率不为0,
可设直线m的方程为ty=x-1,A(x1,y1),B(x2,y2).
联立消去x得y2-4ty-4=0,∵Δ>0,
∴y1+y2=4t,即x1+x2=4t2+2,
∴线段AB的中点M的坐标为(2t2+1,2t).
设点A到直线l的距离为dA,点B到直线l的距离为dB,点M到直线l的距离为d,
则dA+dB=2d=2·=2|t2-t+1|=2,
∴当t=时,A,B两点到直线l的距离之和最小,最小值为.
点评:本例的求解有两大亮点,一是直线m的设法:ty=x-1,避免了讨论斜率不存在的情形;另一个是将dA+dB的最值问题巧妙的转化为AB的中点M到直线l的最值问题,在转化中抛物线的定义及梯形中位线的性质起了关键性作用.
技法三 利用不等式法求最值(范围)
[典例3] 已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.
[思维流程]
[解] (1)设F(c,0),由条件知,=,得c=.
又=,所以a=2,b2=a2-c2=1.
故E的方程为+y2=1.
(2)当l⊥x轴时,不合题意,
故设l:y=kx-2,P(x1,y1),Q(x2,y2).
将y=kx-2代入+y2=1,
得(1+4k2)x2-16kx+12=0.
当Δ=16(4k2-3)>0,
即k2>时,x1,2=.
从而|PQ|=|x1-x2|=.
又点O到直线PQ的距离d=.
所以△OPQ的面积S△OPQ=·d·|PQ|=.
设=t,
则t>0,S△OPQ==≤1.
当且仅当t=2,
即k=±时等号成立,且满足Δ>0.
所以当△OPQ的面积最大时,l的方程为2y±x+4=0.
点评:基本不等式求最值的五种典型情况分析
(1)s=(先换元,注意“元”的范围,再利用基本不等式).
(2)s=≥eq
\f
(?k2+1?2,\b\lc\[\rc\](\a\vs4\al\co1(\f
(?1+2k2?+?k2+2?,2))))(基本不等式).
(3)s=(基本不等式).
(4)s==(先分离参数,再利用基本不等式).
(5)s==(上下同时除以k2,令t=k+换元,再利用基本不等式).
PAGE第3课时 圆锥曲线中的证明、探索性问题
技法阐释
1.圆锥曲线中的证明问题,常见的有位置关系方面的,如证明相切、垂直、过定点等;数量关系方面的,如存在定值、恒成立、值相等、角相等、三点共线等.在熟悉圆锥曲线的定义和性质的前提下,要多采用直接法证明,但有时也会用到反证法.2.“肯定顺推法”解决探索性问题,即先假设结论成立,用待定系数法列出相应参数的方程,倘若相应方程有解,则探索的元素存在(或命题成立),否则不存在(或不成立).
高考示例
思维过程
(2018·全国卷Ⅲ)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<-;(2)设F为C的右焦点,P为C上一点,且++=0.证明:||,||,||成等差数列,并求该数列的公差.
技法一 直接转化法证明几何图形问题
[典例1] (2018·全国卷Ⅰ)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
(1)当l与x轴垂直时,求直线AM的方程;
(2)设O为坐标原点,证明:∠OMA=∠OMB.
[思维流程]
[解] (1)由已知得F(1,0),l的方程为x=1.
由已知可得,点A的坐标为或.
又M(2,0),所以AM的方程为y=-x+或y=x-.
(2)证明:当l与x轴重合时,∠OMA=∠OMB=0°.
当l与x轴垂直时,OM为AB的垂直平分线,所以∠OMA=∠OMB.
当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),
则x1<,x2<,直线MA,MB的斜率之和为kMA+kMB=+.
由y1=kx1-k,y2=kx2-k得
kMA+kMB=.
将y=k(x-1)代入+y2=1得
(2k2+1)x2-4k2x+2k2-2=0.
所以,x1+x2=,x1x2=.
则2kx1x2-3k(x1+x2)+4k==0.
从而kMA+kMB=0,故MA,MB的倾斜角互补.所以∠OMA=∠OMB.
综上,∠OMA=∠OMB.
点评:解决本题的关键是把图形中“角相等”关系转化为相关直线的斜率之和为零;类似的还有圆过定点问题,转化为在该点的圆周角为直角,进而转化为斜率之积为-1;线段长度的比问题转化为线段端点的纵坐标或横坐标之比.
技法二 直接法证明数量关系式
[典例2] 已知顶点是坐标原点的抛物线Γ的焦点F在y轴正半轴上,圆心在直线y=x上的圆E与x轴相切,且点E,F关于点M(-1,0)对称.
(1)求E和Γ的标准方程;
(2)过点M的直线l与圆E交于A,B两点,与Γ交于C,D两点,求证:|CD|>|AB|.
[思维流程]
[解] (1)设Γ的标准方程为x2=2py,p>0,则F.
已知点E在直线y=x上,
故可设E(2a,a).
因为E,F关于M(-1,0)对称,
所以
解得
所以抛物线Γ的标准方程为x2=4y.
因为圆E与x轴相切,故半径r=|a|=1,
所以圆E的标准方程为(x+2)2+(y+1)2=1.
(2)证明:由题意知,直线l的斜率存在,设l的斜率为k,那么其方程为y=k(x+1)(k≠0).
则E(-2,-1)到l的距离d=,
因为l与E交于A,B两点,
所以d2<r2,即<1,
解得k>0,
所以|AB|=2=2.
由消去y并整理得,
x2-4kx-4k=0.
Δ=16k2+16k>0恒成立,设C(x1,y1),D(x2,y2),
则x1+x2=4k,x1x2=-4k,
那么|CD|=|x1-x2|
=·
=4·.
所以=
=>=2.
所以|CD|2>2|AB|2,
即|CD|>|AB|.
点评:本例是抛物线与圆的交汇问题,涉及弦长的求解,应各选最优方法,圆的弦长为勾股定理的求解,抛物线的弦长,则需借助弦长公式.
技法三 “肯定顺推法”解决探索性问题
[典例3] 已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.
[思维流程]
[解] (1)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).
将y=kx+b代入9x2+y2=m2,得(k2+9)x2+2kbx+b2-m2=0,
故xM==,yM=kxM+b=.
于是直线OM的斜率kOM==-,即kOM·k=-9.
所以直线OM的斜率与l的斜率的乘积为定值.
(2)四边形OAPB能为平行四边形.
因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.
由(1)得OM的方程为y=-x.
设点P的横坐标为xP.
由得x=,即xP=.
将点的坐标代入直线l的方程得b=,
因此xM=.
四边形OAPB为平行四边形,当且仅当线段AB与线段OP互相平分,即xP=2xM.
于是=2×,解得k1=4-,k2=4+.
因为ki>0,ki≠3,i=1,2,所以当直线l的斜率为4-或4+时,四边形OAPB为平行四边形.
点评:本例题干信息中涉及几何图形:平行四边形,把几何关系用数量关系等价转化是求解此类问题的关键.几种常见几何条件的转化如下:
(1)平行四边形条件的转化
几何性质
代数实现
①对边平行
斜率相等,或向量平行
②对边相等
长度相等,横(纵)坐标差相等
③对角线互相平分
中点重合
(2)圆条件的转化
几何性质
代数实现
①点在圆上
点与直径端点向量数量积为零
②点在圆外
点与直径端点向量数量积为正数
③点在圆内
点与直径端点向量数量积为负数
(3)角条件的转化
几何性质
代数实现
①锐角、直角、钝角
角的余弦(向量数量积)的符号
②倍角、半角、平分角
角平分线性质、定理
③等角(相等或相似)
比例线段或斜率
PAGE