大题专练六(立体几何)
一、知识梳理
1.直线与平面平行的判定定理和性质定理
文字语言
图形语言
符号语言
判定
定理
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行?线面平行”)
因为l∥a,
a?α,l?α,
所以l∥α
性质
定理
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行?线线平行”)
因为l∥α,
l?β,
α∩β=b,
所以l∥b
2.平面与平面平行的判定定理和性质定理
文字语言
图形语言
符号语言
判定
定理
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行?面面平行”)
因为a∥β,
b∥β,a∩b=P,
a?α,b?α,
所以α∥β
性质
定理
如果两个平行平面同时和第三个平面相交,那么它们的交线平行
因为α∥β,
α∩γ=a,
β∩γ=b,
所以a∥b
3.直线与平面垂直的判定定理与性质定理
文字语言
图形语言
符号语言
判定
定理
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直
?l⊥α
性质
定理
垂直于同一个平面的两条直线平行
?a∥b
4.平面与平面垂直的判定定理与性质定理
文字语言
图形语言
符号语言
判定
定理
一个平面过另一个平面的垂线,则这两个平面垂直
?α⊥β
性质
定理
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
?l⊥α
5.直线的方向向量与平面的法向量的确定
(1)直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称为直线l的方向向量,与平行的任意非零向量也是直线l的方向向量,显然一条直线的方向向量可以有无数个.
(2)平面的法向量
①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.
②确定:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为
6.空间位置关系的向量表示
位置关系
向量表示
直线l1,l2的方向向量分别为n1,n2
l1∥l2
n1∥n2?n1=λn2
l1⊥l2
n1⊥n2?n1·n2=0
直线l的方向向量为n,平面α的法向量为m
l∥α
n⊥m?n·m=0
l⊥α
n∥m?n=λm
平面α,β的法向量分别为n,m
α∥β
n∥m?n=λm
α⊥β
n⊥m?n·m=0
7.两条异面直线所成角的求法
设a,b分别是两异面直线l1,l2的方向向量,则
l1与l2所成的角θ
a与b的夹角β
范围
[0,π]
求法
cos
θ=
cos
β=
直线与平面所成角的求法
设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sin
θ=|cos
β|=.
求二面角的大小
(1)如图①,AB,CD分别是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈,〉.
(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos
θ|=|cos〈n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角).
8利用空间向量求距离
(1)两点间的距离
设点A(x1,y1,z1),点B(x2,y2,z2),则|AB|=||=.
(2)点到平面的距离
如图所示,已知AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离为||=.
1.如图,已知长方体ABCD?A1B1C1D1中,AD=AA1=1,AB=3,E为线段AB上一点,且AE=AB,求DC1与平面D1EC所成的角的正弦值
2.如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:
(1)PB∥平面EFG;
(2)平面EFG∥平面PBC.
参考答案
1.如图,以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则C1(0,3,1),D1(0,0,1),E(1,1,0),C(0,3,0),所以=(0,3,1),=(1,1,-1),=(0,3,-1).
设平面D1EC的法向量为n=(x,y,z),
则即即取y=1,得n=(2,1,3).
因为cos〈,n〉===,所以DC1与平面D1EC所成的角的正弦值为
2. (1)因为平面PAD⊥平面ABCD,且ABCD为正方形,所以AB,AP,AD两两垂直.
以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).
法一:=(0,1,0),=(1,2,-1),
设平面EFG的法向量为n=(x,y,z),
则即
令z=1,则n=(1,0,1)为平面EFG的一个法向量,
因为=(2,0,-2),
所以·n=0,所以n⊥,
因为PB?平面EFG,所以PB∥平面EFG.
法二:=(2,0,-2),=(0,-1,0),=(1,1,-1).设=s+t,
即(2,0,-2)=s(0,-1,0)+t(1,1,-1),
所以解得s=t=2.所以=2+2,
又因为与不共线,
所以,与共面.
因为PB?平面EFG,所以PB∥平面EFG.
(2)因为=(0,1,0),=(0,2,0),
所以=2,
所以BC∥EF.
又因为EF?平面PBC,BC?平面PBC,
所以EF∥平面PBC,
同理可证GF∥PC,
从而得出GF∥平面PBC.
又EF∩GF=F,EF?平面EFG,GF?平面EFG,
所以平面EFG∥平面PBC.