2017年高考理数真题试卷(北京卷)
一、选择题.(每小题5分)
1.(2017·北京)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=( )
A.{x|﹣2<x<﹣1} B.{x|﹣2<x<3}
C.{x|﹣1<x<1} D.{x|1<x<3}
【答案】A
【知识点】交集及其运算
【解析】【解答】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},
∴A∩B={x|﹣2<x<﹣1}
故选:A
【分析】根据已知中集合A和B,结合集合交集的定义,可得答案.
2.(2017·北京)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是( )
A.(﹣∞,1) B.(﹣∞,﹣1)
C.(1,+∞) D.(﹣1,+∞)
【答案】B
【知识点】虚数单位i及其性质;复数在复平面中的表示;复数代数形式的乘除运算
【解析】【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,
∴ ,解得a<﹣1.
则实数a的取值范围是(﹣∞,﹣1).
故选:B.
【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,可得 ,解得a范围.
3.(2017·北京)执行如图所示的程序框图,输出的S值为( )
A.2 B. C. D.
【答案】C
【知识点】循环结构;程序框图
【解析】【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,
当k=1时,满足进行循环的条件,执行完循环体后,k=2,S= ,
当k=2时,满足进行循环的条件,执行完循环体后,k=3,S= ,
当k=3时,不满足进行循环的条件,
故输出结果为: ,
故选:C.
【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.
4.(2017·北京)若x,y满足 ,则x+2y的最大值为( )
A.1 B.3 C.5 D.9
【答案】D
【知识点】二元一次不等式(组)与平面区域;简单线性规划
【解析】【解答】解:x,y满足 的可行域如图:
由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由 ,可得A(3,3),
目标函数的最大值为:3+2×3=9.
故选:D.
【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.
5.(2017·北京)已知函数f(x)=3x﹣( )x,则f(x)( )
A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数
C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数
【答案】A
【知识点】函数单调性的性质;奇函数与偶函数的性质;奇偶性与单调性的综合
【解析】【解答】解:显然,函数的定义域为全体实数,
f(x)=3x﹣( )x=3x﹣3﹣x,
∴f(﹣x)=3﹣x﹣3x=﹣f(x),
即函数f(x)为奇函数,
又由函数y=3x为增函数,y=( )x为减函数,
故函数f(x)=3x﹣( )x为增函数,
故选:A.
【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=( )x为减函数,结合“增”﹣“减”=“增”可得答案.
6.(2017·北京)设 , 为非零向量,则“存在负数λ,使得 =λ ”是 <0”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
【答案】A
【知识点】必要条件、充分条件与充要条件的判断;平面向量数乘的运算;平面向量数量积的性质
【解析】【解答】解: , 为非零向量,存在负数λ,使得 =λ ,则向量 , 共线且方向相反,可得 <0.
反之不成立,非零向量 , 的夹角为钝角,满足 <0,而 =λ 不成立.
∴ , 为非零向量,则“存在负数λ,使得 =λ ”是 <0”的充分不必要条件.
故选:A.
【分析】 , 为非零向量,存在负数λ,使得 =λ ,则向量 , 共线且方向相反,可得 <0.反之不成立,非零向量 , 的夹角为钝角,满足 <0,而 =λ 不成立.即可判断出结论.
7.(2017·北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )
A.3 B.2 C.2 D.2
【答案】B
【知识点】由三视图求面积、体积;由三视图还原实物图
【解析】【解答】解:由三视图可得直观图,
再四棱锥P﹣ABCD中,
最长的棱为PA,
即PA= =
=2 ,
故选:B.
【分析】根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.
8.(2017·北京)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与 最接近的是( )
(参考数据:lg3≈0.48)
A.1033 B.1053 C.1073 D.1093
【答案】D
【知识点】指数式与对数式的互化
【解析】【解答】解:由题意:M≈3361,N≈1080,
根据对数性质有:3=10lg3≈100.48,
∴M≈3361≈(100.48)361≈10173,
∴ ≈ =1093,
故本题选:D.
【分析】根据对数的性质:T= ,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.
二、填空题(每小题5分)
9.(2017·北京)若双曲线x2﹣ =1的离心率为 ,则实数m= .
【答案】2
【知识点】双曲线的标准方程;双曲线的简单性质
【解析】【解答】解:双曲线x2﹣ =1(m>0)的离心率为 ,
可得: ,
解得m=2.
故答案为:2.
【分析】利用双曲线的离心率,列出方程求和求解m 即可.
10.(2017·北京)若等差数列{an}和等比数列{bn}满足a1=b1=﹣1,a4=b4=8,则 = .
【答案】1
【知识点】等差数列与等比数列的综合
【解析】【解答】解:等差数列{an}和等比数列{bn}满足a1=b1=﹣1,a4=b4=8,
设等差数列的公差为d,等比数列的公比为q.
可得:8=﹣1+3d,d=3,a2=2;
8=﹣q3,解得q=﹣2,∴b2=2.
可得 =1.
故答案为:1.
【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果.
11.(2017·北京)在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为 .
【答案】1
【知识点】点与圆的位置关系;简单曲线的极坐标方程;点的极坐标和直角坐标的互化
【解析】【解答】解:设圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0为圆C,将圆C的极坐标方程化为:x2+y2﹣2x﹣4y+4=0,
再化为标准方程:(x﹣1)2+(y﹣2)2=1;
如图,当A在CP与⊙C的交点Q处时,|AP|最小为:
|AP|min=|CP|﹣rC=2﹣1=1,
故答案为:1.
【分析】先将圆的极坐标方程化为标准方程,再运用数形结合的方法求出圆上的点到点P的距离的最小值.
12.(2017·北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα= ,则cos(α﹣β)= .
【答案】﹣
【知识点】两角和与差的余弦公式;同角三角函数基本关系的运用;运用诱导公式化简求值
【解析】【解答】解:方法一:∵角α与角β均以Ox为始边,它们的终边关于y轴对称,
∴sinα=sinβ= ,cosα=﹣cosβ,
∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣cos2α+sin2α=2sin2α﹣1= ﹣1=﹣
方法二:∵sinα= ,
当α在第一象限时,cosα= ,
∵α,β角的终边关于y轴对称,
∴β在第二象限时,sinβ=sinα= ,cosβ=﹣cosα=﹣ ,
∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣ × + × =﹣
:∵sinα= ,
当α在第二象限时,cosα=﹣ ,
∵α,β角的终边关于y轴对称,
∴β在第一象限时,sinβ=sinα= ,cosβ=﹣cosα= ,
∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣ × + × =﹣
综上所述cos(α﹣β)=﹣ ,
故答案为:﹣
【分析】方法一:根据教的对称得到sinα=sinβ= ,cosα=﹣cosβ,以及两角差的余弦公式即可求出
方法二:分α在第一象限,或第二象限,根据同角的三角函数的关系以及两角差的余弦公式即可求出
13.(2017·北京)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为 .
【答案】﹣1,﹣2,﹣3
【知识点】命题的否定;命题的真假判断与应用
【解析】【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,
则若a>b>c,则a+b≤c”是真命题,
可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),
故答案为:﹣1,﹣2,﹣3
【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,举例即可,本题答案不唯一
14.(2017·北京)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.
①记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是 .
②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是 .
【答案】Q1;p2
【知识点】函数的图象与图象变化
【解析】【解答】解:①若Qi为第i名工人在这一天中加工的零件总数,
Q1=A1的综坐标+B1的综坐标;
Q2=A2的综坐标+B2的综坐标,
Q3=A3的综坐标+B3的综坐标,
由已知中图象可得:Q1,Q2,Q3中最大的是Q1,
②若pi为第i名工人在这一天中平均每小时加工的零件数,
则pi为AiBi中点与原点连线的斜率,
故p1,p2,p3中最大的是p2
故答案为:Q1,p2
【分析】①若Qi为第i名工人在这一天中加工的零件总数,则Qi=Ai的综坐标+Bi的综坐标;进而得到答案.
②若pi为第i名工人在这一天中平均每小时加工的零件数,则pi为AiBi中点与原点连线的斜率;进而得到答案.
三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。
15.(2017·北京)在△ABC中,∠A=60°,c= a.(13分)
(1)求sinC的值;
(2)若a=7,求△ABC的面积.
【答案】(1)解:∠A=60°,c= a,
由正弦定理可得sinC= sinA= × = ,
(2)解:a=7,则c=3,
∴C<A,
由(1)可得cosC= ,
∴sinB=sin(A+C)=sinAcosC+cosAsinC= × + × = ,
∴S△ABC= acsinB= ×7×3× =6 .
【知识点】两角和与差的正弦公式;同角三角函数间的基本关系;正弦定理;三角形中的几何计算
【解析】【分析】(1.)根据正弦定理即可求出答案,
(2.)根据同角的三角函数的关系求出cosC,再根据两角和正弦公式求出sinB,根据面积公式计算即可.
16.(2017·北京)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD= ,AB=4.
(1)求证:M为PB的中点;
(2)求二面角B﹣PD﹣A的大小;
(3)求直线MC与平面BDP所成角的正弦值.
【答案】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,
∵PD∥平面MAC,PD 平面PBD,平面PBD∩平面AMC=OM,
∴PD∥OM,则 ,即M为PB的中点;
(2)解:取AD中点G,
∵PA=PD,∴PG⊥AD,
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,
由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.
以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,
由PA=PD= ,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0, ),C(2,4,0),B(﹣2,4,0),M(﹣1,2, ),
, .
设平面PBD的一个法向量为 ,
则由 ,得 ,取z= ,得 .
取平面PAD的一个法向量为 .
∴cos< >= = .
∴二面角B﹣PD﹣A的大小为60°;
(3)解: ,平面PAD的一个法向量为 .
∴直线MC与平面BDP所成角的正弦值为|cos< >|=| |=| |= .
【知识点】直线与平面平行的性质;平面与平面垂直的性质;直线与平面所成的角;二面角的平面角及求法
【解析】【分析】(1.)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;
(2.)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;
(3.)求出 的坐标,由 与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.
17.(2017·北京)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.
(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;
(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);
(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
【答案】(1)解:由图知:在50名服药患者中,有15名患者指标y的值小于60,
则从服药的50名患者中随机选出一人,此人指标小于60的概率为:
p= = .
(2)解:由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,
可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,
P(ξ=0)= ,
P(ξ=1)= = ,
P(ξ=2)= = ,
∴ξ的分布列如下:
ξ 0 1 2
P
E(ξ)= =1.
(3)解:由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.
【知识点】随机抽样和样本估计总体的实际应用;古典概型及其概率计算公式;离散型随机变量及其分布列;离散型随机变量的期望与方差
【解析】【分析】(1.)由图求出在50名服药患者中,有15名患者指标y的值小于60,由此能求出从服药的50名患者中随机选出一人,此人指标小于60的概率.
(2.)由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).
(3.)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.
18.(2017·北京)已知抛物线C:y2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(14分)
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.
【答案】(1)解:(1)∵y2=2px过点P(1,1),∴1=2p,
解得p= ,
∴y2=x,∴焦点坐标为( ,0),准线为x=﹣ ,
(2)(2)证明:设过点(0, )的直线方程为
y=kx+ ,M(x1,y1),N(x2,y2),
∴直线OP为y=x,直线ON为:y= x,
由题意知A(x1,x1),B(x1, ),
由 ,可得k2x2+(k﹣1)x+ =0,
∴x1+x2= ,x1x2=
∴y1+ =kx1+ + =2kx1+ =2kx1+ =
∴A为线段BM的中点.
【知识点】抛物线的简单性质;抛物线的应用;直线与圆锥曲线的综合问题
【解析】【分析】(1.)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;
(2.)设过点(0, )的直线方程为y=kx+ ,M(x1,y1),N(x2,y2),根据韦达定理得到x1+x2= ,x1x2= ,根据中点的定义即可证明.
19.(2017·北京)已知函数f(x)=excosx﹣x.(13分)
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0, ]上的最大值和最小值.
【答案】(1)解:函数f(x)=excosx﹣x的导数为f′(x)=ex(cosx﹣sinx)﹣1,
可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,
切点为(0,e0cos0﹣0),即为(0,1),
曲线y=f(x)在点(0,f(0))处的切线方程为y=1;
(2)解:函数f(x)=excosx﹣x的导数为f′(x)=ex(cosx﹣sinx)﹣1,
令g(x)=ex(cosx﹣sinx)﹣1,
则g(x)的导数为g′(x)=ex(cosx﹣sinx﹣sinx﹣cosx)=﹣2ex sinx,
当x∈[0, ],可得g′(x)=﹣2ex sinx≤0,
即有g(x)在[0, ]递减,可得g(x)≤g(0)=0,
则f(x)在[0, ]递减,
即有函数f(x)在区间[0, ]上的最大值为f(0)=e0cos0﹣0=1;
最小值为f( )=e cos ﹣ =﹣ .
【知识点】利用导数研究函数最大(小)值;利用导数研究曲线上某点切线方程
【解析】【分析】(1.)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;
(2.)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0, ]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.
20.(2017·北京)设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数.(13分)
(1)若an=n,bn=2n﹣1,求c1,c2,c3的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当n≥m时, >M;或者存在正整数m,使得cm,cm+1,cm+2,…是等差数列.
【答案】(1)解: a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,
当n=1时,c1=max{b1﹣a1}=max{0}=0,
当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,
当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,
下面证明:对 n∈N*,且n≥2,都有cn=b1﹣na1,
当n∈N*,且2≤k≤n时,
则(bk﹣nak)﹣(b1﹣na1),
=[(2k﹣1)﹣nk]﹣1+n,
=(2k﹣2)﹣n(k﹣1),
=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,
则(bk﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak,
因此,对 n∈N*,且n≥2,cn=b1﹣na1=1﹣n,
cn+1﹣cn=﹣1,
∴c2﹣c1=﹣1,
∴cn+1﹣cn=﹣1对 n∈N*均成立,
∴数列{cn}是等差数列;
(2)证明:设数列{an}和{bn}的公差分别为d1,d2,下面考虑的cn取值,
由b1﹣a1n,b2﹣a2n,…,bn﹣ann,
考虑其中任意bi﹣ain,(i∈N*,且1≤i≤n),
则bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,
=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),
下面分d1=0,d1>0,d1<0三种情况进行讨论,
①若d1=0,则bi﹣ain═(b1﹣a1n)+(i﹣1)d2,
当若d2≤0,则(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)d2≤0,
则对于给定的正整数n而言,cn=b1﹣a1n,此时cn+1﹣cn=﹣a1,
∴数列{cn}是等差数列;
当d1>0,(bi﹣ain)﹣(bn﹣ann)=(i﹣1)d2≤0,
则对于给定的正整数n而言,cn=bn﹣ann=bn﹣a1n,
此时cn+1﹣cn=d2﹣a1,
∴数列{cn}是等差数列;
此时取m=1,则c1,c2,…,是等差数列,命题成立;
②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,
故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,
则当n≥m时,(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),
因此当n≥m时,cn=b1﹣a1n,
此时cn+1﹣cn=﹣a1,故数列{cn}从第m项开始为等差数列,命题成立;
③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,
故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,
则当n≥s时,(bi﹣ain)﹣(bn﹣ann)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),
因此,当n≥s时,cn=bn﹣ann,
此时= =﹣an+ ,
=﹣d2n+(d1﹣a1+d2)+ ,
令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,
下面证明: =An+B+ 对任意正整数M,存在正整数m,使得n≥m, >M,
若C≥0,取m=[ +1],[x]表示不大于x的最大整数,
当n≥m时, ≥An+B≥Am+B=A[ +1]+B>A +B=M,
此时命题成立;
若C<0,取m=[ ]+1,
当n≥m时,
≥An+B+ ≥Am+B+C>A +B+C ≥M﹣C﹣B+B+C=M,
此时命题成立,
因此对任意正数M,存在正整数m,使得当n≥m时, >M;
综合以上三种情况,命题得证.
【知识点】数列的应用;等差关系的确定
【解析】【分析】(1.)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(bk﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak,则cn=b1﹣na1=1﹣n,cn+1﹣cn=﹣1对 n∈N*均成立;
(2.)由bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得cm,cm+1,cm+2,…是等差数列;设 =An+B+ 对任意正整数M,存在正整数m,使得n≥m, >M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时, >M.
1 / 12017年高考理数真题试卷(北京卷)
一、选择题.(每小题5分)
1.(2017·北京)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=( )
A.{x|﹣2<x<﹣1} B.{x|﹣2<x<3}
C.{x|﹣1<x<1} D.{x|1<x<3}
2.(2017·北京)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是( )
A.(﹣∞,1) B.(﹣∞,﹣1)
C.(1,+∞) D.(﹣1,+∞)
3.(2017·北京)执行如图所示的程序框图,输出的S值为( )
A.2 B. C. D.
4.(2017·北京)若x,y满足 ,则x+2y的最大值为( )
A.1 B.3 C.5 D.9
5.(2017·北京)已知函数f(x)=3x﹣( )x,则f(x)( )
A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数
C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数
6.(2017·北京)设 , 为非零向量,则“存在负数λ,使得 =λ ”是 <0”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
7.(2017·北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )
A.3 B.2 C.2 D.2
8.(2017·北京)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与 最接近的是( )
(参考数据:lg3≈0.48)
A.1033 B.1053 C.1073 D.1093
二、填空题(每小题5分)
9.(2017·北京)若双曲线x2﹣ =1的离心率为 ,则实数m= .
10.(2017·北京)若等差数列{an}和等比数列{bn}满足a1=b1=﹣1,a4=b4=8,则 = .
11.(2017·北京)在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为 .
12.(2017·北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα= ,则cos(α﹣β)= .
13.(2017·北京)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为 .
14.(2017·北京)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.
①记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是 .
②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是 .
三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。
15.(2017·北京)在△ABC中,∠A=60°,c= a.(13分)
(1)求sinC的值;
(2)若a=7,求△ABC的面积.
16.(2017·北京)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD= ,AB=4.
(1)求证:M为PB的中点;
(2)求二面角B﹣PD﹣A的大小;
(3)求直线MC与平面BDP所成角的正弦值.
17.(2017·北京)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.
(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;
(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);
(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
18.(2017·北京)已知抛物线C:y2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(14分)
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.
19.(2017·北京)已知函数f(x)=excosx﹣x.(13分)
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0, ]上的最大值和最小值.
20.(2017·北京)设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数.(13分)
(1)若an=n,bn=2n﹣1,求c1,c2,c3的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当n≥m时, >M;或者存在正整数m,使得cm,cm+1,cm+2,…是等差数列.
答案解析部分
1.【答案】A
【知识点】交集及其运算
【解析】【解答】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},
∴A∩B={x|﹣2<x<﹣1}
故选:A
【分析】根据已知中集合A和B,结合集合交集的定义,可得答案.
2.【答案】B
【知识点】虚数单位i及其性质;复数在复平面中的表示;复数代数形式的乘除运算
【解析】【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,
∴ ,解得a<﹣1.
则实数a的取值范围是(﹣∞,﹣1).
故选:B.
【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,可得 ,解得a范围.
3.【答案】C
【知识点】循环结构;程序框图
【解析】【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,
当k=1时,满足进行循环的条件,执行完循环体后,k=2,S= ,
当k=2时,满足进行循环的条件,执行完循环体后,k=3,S= ,
当k=3时,不满足进行循环的条件,
故输出结果为: ,
故选:C.
【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.
4.【答案】D
【知识点】二元一次不等式(组)与平面区域;简单线性规划
【解析】【解答】解:x,y满足 的可行域如图:
由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由 ,可得A(3,3),
目标函数的最大值为:3+2×3=9.
故选:D.
【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.
5.【答案】A
【知识点】函数单调性的性质;奇函数与偶函数的性质;奇偶性与单调性的综合
【解析】【解答】解:显然,函数的定义域为全体实数,
f(x)=3x﹣( )x=3x﹣3﹣x,
∴f(﹣x)=3﹣x﹣3x=﹣f(x),
即函数f(x)为奇函数,
又由函数y=3x为增函数,y=( )x为减函数,
故函数f(x)=3x﹣( )x为增函数,
故选:A.
【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=( )x为减函数,结合“增”﹣“减”=“增”可得答案.
6.【答案】A
【知识点】必要条件、充分条件与充要条件的判断;平面向量数乘的运算;平面向量数量积的性质
【解析】【解答】解: , 为非零向量,存在负数λ,使得 =λ ,则向量 , 共线且方向相反,可得 <0.
反之不成立,非零向量 , 的夹角为钝角,满足 <0,而 =λ 不成立.
∴ , 为非零向量,则“存在负数λ,使得 =λ ”是 <0”的充分不必要条件.
故选:A.
【分析】 , 为非零向量,存在负数λ,使得 =λ ,则向量 , 共线且方向相反,可得 <0.反之不成立,非零向量 , 的夹角为钝角,满足 <0,而 =λ 不成立.即可判断出结论.
7.【答案】B
【知识点】由三视图求面积、体积;由三视图还原实物图
【解析】【解答】解:由三视图可得直观图,
再四棱锥P﹣ABCD中,
最长的棱为PA,
即PA= =
=2 ,
故选:B.
【分析】根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.
8.【答案】D
【知识点】指数式与对数式的互化
【解析】【解答】解:由题意:M≈3361,N≈1080,
根据对数性质有:3=10lg3≈100.48,
∴M≈3361≈(100.48)361≈10173,
∴ ≈ =1093,
故本题选:D.
【分析】根据对数的性质:T= ,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.
9.【答案】2
【知识点】双曲线的标准方程;双曲线的简单性质
【解析】【解答】解:双曲线x2﹣ =1(m>0)的离心率为 ,
可得: ,
解得m=2.
故答案为:2.
【分析】利用双曲线的离心率,列出方程求和求解m 即可.
10.【答案】1
【知识点】等差数列与等比数列的综合
【解析】【解答】解:等差数列{an}和等比数列{bn}满足a1=b1=﹣1,a4=b4=8,
设等差数列的公差为d,等比数列的公比为q.
可得:8=﹣1+3d,d=3,a2=2;
8=﹣q3,解得q=﹣2,∴b2=2.
可得 =1.
故答案为:1.
【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果.
11.【答案】1
【知识点】点与圆的位置关系;简单曲线的极坐标方程;点的极坐标和直角坐标的互化
【解析】【解答】解:设圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0为圆C,将圆C的极坐标方程化为:x2+y2﹣2x﹣4y+4=0,
再化为标准方程:(x﹣1)2+(y﹣2)2=1;
如图,当A在CP与⊙C的交点Q处时,|AP|最小为:
|AP|min=|CP|﹣rC=2﹣1=1,
故答案为:1.
【分析】先将圆的极坐标方程化为标准方程,再运用数形结合的方法求出圆上的点到点P的距离的最小值.
12.【答案】﹣
【知识点】两角和与差的余弦公式;同角三角函数基本关系的运用;运用诱导公式化简求值
【解析】【解答】解:方法一:∵角α与角β均以Ox为始边,它们的终边关于y轴对称,
∴sinα=sinβ= ,cosα=﹣cosβ,
∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣cos2α+sin2α=2sin2α﹣1= ﹣1=﹣
方法二:∵sinα= ,
当α在第一象限时,cosα= ,
∵α,β角的终边关于y轴对称,
∴β在第二象限时,sinβ=sinα= ,cosβ=﹣cosα=﹣ ,
∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣ × + × =﹣
:∵sinα= ,
当α在第二象限时,cosα=﹣ ,
∵α,β角的终边关于y轴对称,
∴β在第一象限时,sinβ=sinα= ,cosβ=﹣cosα= ,
∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣ × + × =﹣
综上所述cos(α﹣β)=﹣ ,
故答案为:﹣
【分析】方法一:根据教的对称得到sinα=sinβ= ,cosα=﹣cosβ,以及两角差的余弦公式即可求出
方法二:分α在第一象限,或第二象限,根据同角的三角函数的关系以及两角差的余弦公式即可求出
13.【答案】﹣1,﹣2,﹣3
【知识点】命题的否定;命题的真假判断与应用
【解析】【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,
则若a>b>c,则a+b≤c”是真命题,
可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),
故答案为:﹣1,﹣2,﹣3
【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,举例即可,本题答案不唯一
14.【答案】Q1;p2
【知识点】函数的图象与图象变化
【解析】【解答】解:①若Qi为第i名工人在这一天中加工的零件总数,
Q1=A1的综坐标+B1的综坐标;
Q2=A2的综坐标+B2的综坐标,
Q3=A3的综坐标+B3的综坐标,
由已知中图象可得:Q1,Q2,Q3中最大的是Q1,
②若pi为第i名工人在这一天中平均每小时加工的零件数,
则pi为AiBi中点与原点连线的斜率,
故p1,p2,p3中最大的是p2
故答案为:Q1,p2
【分析】①若Qi为第i名工人在这一天中加工的零件总数,则Qi=Ai的综坐标+Bi的综坐标;进而得到答案.
②若pi为第i名工人在这一天中平均每小时加工的零件数,则pi为AiBi中点与原点连线的斜率;进而得到答案.
15.【答案】(1)解:∠A=60°,c= a,
由正弦定理可得sinC= sinA= × = ,
(2)解:a=7,则c=3,
∴C<A,
由(1)可得cosC= ,
∴sinB=sin(A+C)=sinAcosC+cosAsinC= × + × = ,
∴S△ABC= acsinB= ×7×3× =6 .
【知识点】两角和与差的正弦公式;同角三角函数间的基本关系;正弦定理;三角形中的几何计算
【解析】【分析】(1.)根据正弦定理即可求出答案,
(2.)根据同角的三角函数的关系求出cosC,再根据两角和正弦公式求出sinB,根据面积公式计算即可.
16.【答案】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,
∵PD∥平面MAC,PD 平面PBD,平面PBD∩平面AMC=OM,
∴PD∥OM,则 ,即M为PB的中点;
(2)解:取AD中点G,
∵PA=PD,∴PG⊥AD,
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,
由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.
以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,
由PA=PD= ,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0, ),C(2,4,0),B(﹣2,4,0),M(﹣1,2, ),
, .
设平面PBD的一个法向量为 ,
则由 ,得 ,取z= ,得 .
取平面PAD的一个法向量为 .
∴cos< >= = .
∴二面角B﹣PD﹣A的大小为60°;
(3)解: ,平面PAD的一个法向量为 .
∴直线MC与平面BDP所成角的正弦值为|cos< >|=| |=| |= .
【知识点】直线与平面平行的性质;平面与平面垂直的性质;直线与平面所成的角;二面角的平面角及求法
【解析】【分析】(1.)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;
(2.)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;
(3.)求出 的坐标,由 与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.
17.【答案】(1)解:由图知:在50名服药患者中,有15名患者指标y的值小于60,
则从服药的50名患者中随机选出一人,此人指标小于60的概率为:
p= = .
(2)解:由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,
可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,
P(ξ=0)= ,
P(ξ=1)= = ,
P(ξ=2)= = ,
∴ξ的分布列如下:
ξ 0 1 2
P
E(ξ)= =1.
(3)解:由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.
【知识点】随机抽样和样本估计总体的实际应用;古典概型及其概率计算公式;离散型随机变量及其分布列;离散型随机变量的期望与方差
【解析】【分析】(1.)由图求出在50名服药患者中,有15名患者指标y的值小于60,由此能求出从服药的50名患者中随机选出一人,此人指标小于60的概率.
(2.)由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).
(3.)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.
18.【答案】(1)解:(1)∵y2=2px过点P(1,1),∴1=2p,
解得p= ,
∴y2=x,∴焦点坐标为( ,0),准线为x=﹣ ,
(2)(2)证明:设过点(0, )的直线方程为
y=kx+ ,M(x1,y1),N(x2,y2),
∴直线OP为y=x,直线ON为:y= x,
由题意知A(x1,x1),B(x1, ),
由 ,可得k2x2+(k﹣1)x+ =0,
∴x1+x2= ,x1x2=
∴y1+ =kx1+ + =2kx1+ =2kx1+ =
∴A为线段BM的中点.
【知识点】抛物线的简单性质;抛物线的应用;直线与圆锥曲线的综合问题
【解析】【分析】(1.)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;
(2.)设过点(0, )的直线方程为y=kx+ ,M(x1,y1),N(x2,y2),根据韦达定理得到x1+x2= ,x1x2= ,根据中点的定义即可证明.
19.【答案】(1)解:函数f(x)=excosx﹣x的导数为f′(x)=ex(cosx﹣sinx)﹣1,
可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,
切点为(0,e0cos0﹣0),即为(0,1),
曲线y=f(x)在点(0,f(0))处的切线方程为y=1;
(2)解:函数f(x)=excosx﹣x的导数为f′(x)=ex(cosx﹣sinx)﹣1,
令g(x)=ex(cosx﹣sinx)﹣1,
则g(x)的导数为g′(x)=ex(cosx﹣sinx﹣sinx﹣cosx)=﹣2ex sinx,
当x∈[0, ],可得g′(x)=﹣2ex sinx≤0,
即有g(x)在[0, ]递减,可得g(x)≤g(0)=0,
则f(x)在[0, ]递减,
即有函数f(x)在区间[0, ]上的最大值为f(0)=e0cos0﹣0=1;
最小值为f( )=e cos ﹣ =﹣ .
【知识点】利用导数研究函数最大(小)值;利用导数研究曲线上某点切线方程
【解析】【分析】(1.)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;
(2.)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0, ]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.
20.【答案】(1)解: a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,
当n=1时,c1=max{b1﹣a1}=max{0}=0,
当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,
当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,
下面证明:对 n∈N*,且n≥2,都有cn=b1﹣na1,
当n∈N*,且2≤k≤n时,
则(bk﹣nak)﹣(b1﹣na1),
=[(2k﹣1)﹣nk]﹣1+n,
=(2k﹣2)﹣n(k﹣1),
=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,
则(bk﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak,
因此,对 n∈N*,且n≥2,cn=b1﹣na1=1﹣n,
cn+1﹣cn=﹣1,
∴c2﹣c1=﹣1,
∴cn+1﹣cn=﹣1对 n∈N*均成立,
∴数列{cn}是等差数列;
(2)证明:设数列{an}和{bn}的公差分别为d1,d2,下面考虑的cn取值,
由b1﹣a1n,b2﹣a2n,…,bn﹣ann,
考虑其中任意bi﹣ain,(i∈N*,且1≤i≤n),
则bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,
=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),
下面分d1=0,d1>0,d1<0三种情况进行讨论,
①若d1=0,则bi﹣ain═(b1﹣a1n)+(i﹣1)d2,
当若d2≤0,则(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)d2≤0,
则对于给定的正整数n而言,cn=b1﹣a1n,此时cn+1﹣cn=﹣a1,
∴数列{cn}是等差数列;
当d1>0,(bi﹣ain)﹣(bn﹣ann)=(i﹣1)d2≤0,
则对于给定的正整数n而言,cn=bn﹣ann=bn﹣a1n,
此时cn+1﹣cn=d2﹣a1,
∴数列{cn}是等差数列;
此时取m=1,则c1,c2,…,是等差数列,命题成立;
②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,
故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,
则当n≥m时,(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),
因此当n≥m时,cn=b1﹣a1n,
此时cn+1﹣cn=﹣a1,故数列{cn}从第m项开始为等差数列,命题成立;
③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,
故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,
则当n≥s时,(bi﹣ain)﹣(bn﹣ann)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),
因此,当n≥s时,cn=bn﹣ann,
此时= =﹣an+ ,
=﹣d2n+(d1﹣a1+d2)+ ,
令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,
下面证明: =An+B+ 对任意正整数M,存在正整数m,使得n≥m, >M,
若C≥0,取m=[ +1],[x]表示不大于x的最大整数,
当n≥m时, ≥An+B≥Am+B=A[ +1]+B>A +B=M,
此时命题成立;
若C<0,取m=[ ]+1,
当n≥m时,
≥An+B+ ≥Am+B+C>A +B+C ≥M﹣C﹣B+B+C=M,
此时命题成立,
因此对任意正数M,存在正整数m,使得当n≥m时, >M;
综合以上三种情况,命题得证.
【知识点】数列的应用;等差关系的确定
【解析】【分析】(1.)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(bk﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak,则cn=b1﹣na1=1﹣n,cn+1﹣cn=﹣1对 n∈N*均成立;
(2.)由bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得cm,cm+1,cm+2,…是等差数列;设 =An+B+ 对任意正整数M,存在正整数m,使得n≥m, >M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时, >M.
1 / 1