2021-2022学年苏科版九年级数学上册《2.1圆》能力达标专题突破训练(附答案)
1.已知⊙O的半径是6cm,则⊙O中最长的弦长是( )
A.6cm B.12cm C.16cm D.20cm
2.A、B是半径为5cm的⊙O上两个不同的点,则弦AB的取值范围是( )
A.AB>0 B.0<AB<5 C.0<AB<10 D.0<AB≤10
3.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是( )
A.甲先到B点 B.乙先到B点
C.甲、乙同时到B D.无法确定
4.如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为40°、70°、150°,则∠B的度数为( )
A.20° B.25° C.30° D.35°
5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )
A.42° B.28° C.21° D.20°
6.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为( )
A.70° B.60° C.50° D.40°
7.如图,OA是⊙O的半径,B为OA上一点(且不与点O、A重合),过点B作OA的垂线交⊙O于点C.以OB、BC为边作矩形OBCD,连接BD.若BD=10,BC=8,则AB的长为( )
A.8 B.6 C.4 D.2
8.如图,A,B,C是⊙O上的三点,AB,AC的圆心O的两侧,若∠ABO=20°,∠ACO=30°,则∠BOC的度数为( )
A.100° B.110° C.125° D.130°
9.下列说法:
①直径是弦;②弦是直径;③半径相等的两个半圆是等弧;④长度相等的两条弧是等弧;⑤半圆是弧,但弧不一定是半圆.
正确的说法有( )
A.1个 B.2个 C.3个 D.4个
10.在平面直角坐标系中,⊙C的圆心坐标为(1,0),半径为1,AB为⊙C的直径,若点A的坐标为(a,b),则点B的坐标为( )
A.(﹣a﹣1,﹣b) B.(﹣a+1,﹣b) C.(﹣a+2,﹣b) D.(﹣a﹣2,﹣b)
11.如图,△ABC中,∠ACB=90°,∠A=40°,以C为圆心、CB为半径的圆交AB于点D,则∠ACD= 度.
12.如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是 .
13.如图,A,B,C是⊙O上三点,∠A=80°,∠C=60°,则∠B的大小为 .
14.如图,在Rt△ABC中,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,∠BCD=40°,则∠A= .
15.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?
16.如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.
求证:AF=BE.
17.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于D,AD<BD,若CD=2cm,AB=5cm,求AD、AC的长.
18.如图:A、B、C是⊙O上的三点,∠AOB=50°,∠OBC=40°,求∠OAC的度数.
19.如图,半圆O的直径AB=8,半径OC⊥AB,D为弧AC上一点,DE⊥OC,DF⊥OA,垂足分别为E、F,求EF的长.
20.已知,如图,在⊙O中,C、D分别是半径OA、BO的中点,求证:AD=BC.
参考答案
1.解:∵圆的直径为圆中最长的弦,
∴⊙O中最长的弦长为12cm.
故选:B.
2.解:∵圆中最长的弦为直径,
∴0<AB≤10.
故选:D.
3.解:π(AA1+A1A2+A2A3+A3B)=π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,
因此两个同时到B点.
故选:C.
4.解:连接OD,如图,
∵∠EOC=40°,∠EOD=70°,∠EOA=150°,
∴∠COD=70°﹣40°=30°,∠DOA=150°﹣70°=80°,
∵OA=OD,
∴∠ODA=∠A=(180°﹣80°)=50°,
∵∠ODA=∠B+∠DOB,
∴∠B=50°﹣30°=20°.
故选:A.
5.解:连接OD,如图,
∵OB=DE,OB=OD,
∴DO=DE,
∴∠E=∠DOE,
∵∠1=∠DOE+∠E,
∴∠1=2∠E,
而OC=OD,
∴∠C=∠1,
∴∠C=2∠E,
∴∠AOC=∠C+∠E=3∠E,
∴∠E=∠AOC=×84°=28°.
故选:B.
6.解:∵AD∥OC,
∴∠AOC=∠DAO=70°,
又∵OD=OA,
∴∠ADO=∠DAO=70°,
∴∠AOD=180﹣70°﹣70°=40°.
故选:D.
7.解:如图,连接OC.
∵四边形OBCD是矩形,
∴∠OBC=90°,BD=OC=OA=10,
∴OB===6,
∴AB=OA﹣OB=4,
故选:C.
8.解:过A作⊙O的直径,交⊙O于D.
在△OAB中,OA=OB,
则∠BOD=∠ABO+∠OAB=2×20°=40°,
同理可得:∠COD=∠ACO+∠OAC=2×30°=60°,
故∠BOC=∠BOD+∠COD=100°.
故选:A.
9.解:①直径是弦,正确,符合题意;
②弦不一定是直径,错误,不符合题意;
③半径相等的两个半圆是等弧,正确,符合题意;
④能够完全重合的两条弧是等弧,故原命题错误,不符合题意;
⑤根据半圆的定义可知,半圆是弧,但弧不一定是半圆,正确,符合题意,
正确的有3个,
故选:C.
10.解:如图,作AD⊥x轴于D,BE⊥x轴于E,
∵AB为⊙C的直径,
∴CA=CB,
而∠ACD=∠BCE,
∴Rt△ACD≌Rt△BCE,
∴AD=BE,DC=CE,
∵点A的坐标为(a,b),⊙C的圆心坐标为(1,0),
∴BE=AD=b,EC=CD=a﹣1,
∴OE=1﹣(a﹣1)=﹣a+2,
∴B点坐标为(﹣a+2,﹣b),
当点A圆上的任何位置都有此结论.
故选:C.
11.解:∵△ABC中,∠ACB=90°,∠A=40°
∴∠B=50°
∵BC=CD
∴∠B=∠BDC=50°
∴∠BCD=80°
∴∠ACD=10°.
12.解:连接OD,
∵CD=OA=OD,∠C=20°,
∴∠ODE=2∠C=40°,
∵OD=OE,
∴∠E=∠EDO=40°,
∴∠EOB=∠C+∠E=40°+20°=60°,
故答案为:60°.
13.解:连接OB,如图,
∵OA=OB,
∴∠A=∠OBA=80°,
∵OB=OC,
∴∠OBC=∠C=60°,
∴∠ABC=∠OBA+∠OBC=80°+60°=140°.
故答案为140°.
14.解:∵CB=CD,
∴∠B=∠CDB,
∵∠B+∠CDB+∠BCD=180°,
∴∠B=(180°﹣∠BCD)=(180°﹣40°)=70°,
∵∠ACB=90°,
∴∠A=90°﹣∠B=20°.
故答案为20°.
15.解:AC与BD相等.理由如下:
连接OC、OD,如图,
∵OA=OB,AE=BF,
∴OE=OF,
∵CE⊥AB,DF⊥AB,
∴∠OEC=∠OFD=90°,
在Rt△OEC和Rt△OFD中,
,
∴Rt△OEC≌Rt△OFD(HL),
∴∠COE=∠DOF,
∴=,
∴AC=BD.
16.解:∵AB、CD为⊙O中两条直径,
∴OA=OB,OC=OD,
∵CE=DF,
∴OE=OF,
在△AOF和△BOE中,
,
∴△AOF≌△BOE(SAS),
∴AF=BE.
17.解:连接OC,
∵AB=5cm,
∴OC=OA=AB=cm,
Rt△CDO中,由勾股定理得:DO==cm,
∴AD=﹣=1cm,
由勾股定理得:AC==,
则AD的长为1cm,AC的长为cm.
18.解:∵OB=OC∴∠OCB=∠OBC=40°(2分)
∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣40°﹣40°=100°(3分)
∴∠AOC=∠AOB+∠BOC=50°+100°=150°(4分)
又∵OA=OC∴∠OAC==15°(6分)
19.解:连接OD.
∵OC⊥AB DE⊥OC,DF⊥OA,
∴∠AOC=∠DEO=∠DFO=90°,
∴四边形DEOF是矩形,
∴EF=OD.
∵OD=OA
∴EF=OA=4.
20.解:∵OA、OB是⊙O的两条半径,
∴AO=BO,
∵C、D分别是半径OA、BO的中点,
∴OC=OD,
在△OCB和△ODA中,
,
∴△OCB≌△ODA(SAS),
∴AD=BC.