《2.2圆的对称性》能力达标专题突破训练2021-2022学年九年级数学苏科版上册(word版带答案)

文档属性

名称 《2.2圆的对称性》能力达标专题突破训练2021-2022学年九年级数学苏科版上册(word版带答案)
格式 doc
文件大小 409.6KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2021-08-16 16:07:36

图片预览

文档简介

2021-2022学年苏科版九年级数学上册《2.2圆的对称性》能力达标专题突破训练(附答案)
1.如图,⊙O的半径为5,弦AB=8,点C是AB的中点,连接OC,则OC的长为(  )
A.1 B.2 C.3 D.4
2.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是(  )
A.1米 B.(4﹣)米 C.2米 D.(4+)米
3.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是(  )
A.3cm B.cm C.2.5cm D.cm
4.往水平放置的半径为13cm的圆柱形容器内装入一些水以后,截面图如图所示,若水面宽度AB=24cm,则水的最大深度为(  )
A.5cm B.8cm C.10cm D.12cm
5.⊙O的半径为5,M是圆外一点,MO=6,∠OMA=30°,则弦AB的长为(  )
A.4 B.6 C.6 D.8
6.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是(  )
A.2 B.2 C.2 D.4
7.如图,A,B是⊙O上的点,∠AOB=120°,C是的中点,若⊙O的半径为5,则四边形ACBO的面积为(  )
A.25 B.25 C. D.
8.如图,某隧道的截面是一个半径为3.4m的半圆形,一辆宽3.2m的卡车恰好能通过该隧道,连车带货一起最高为多少米(  )
A.3m B.3.4m C.4m D.2.8m
9.如图是一种机械传动装置示意图,⊙O的半径为50cm,点A固定在⊙O上,连杆AP定长,点P随着⊙O的转动在射线OP上运动.在一个停止状态时,AP与⊙O交于点B,测得AB=60cm,PB=70cm,此时OP长为   .
10.如图,⊙O的半径OA=15,弦DE⊥AB于点C,若OC:BC=3:2,则DE的长为   .
11.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=   .
12.已知⊙O的直径是50cm,⊙O的两条平行弦AB=40cm,CD=48cm,求弦AB与CD之间的距离为   .
13.如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为   .
14.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,5为半径作⊙O分别与∠EPF的两边相交于A、B和C、D,连接OA,且OA∥PE.
(1)求证:AP=AO;
(2)若弦AB=8,求OP的长.
15.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.
(1)证明:点E是OB的中点;
(2)若AE=8,求CD的长.
16.如图,MN是⊙O的直径,MN=2,点A是半圆上一个三等分点,点B为的中点,点P是直径MN上的一个动点,求PA+PB的最小值.
17.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.
(1)求线段DE的长;
(2)点O到AB的距离为3,求圆O的半径.
18.如图,点A、B、C在⊙O上,=.
(1)若D、E分别是半径OA、OB的中点,如图1,求证:CD=CE.
(2)如图2,⊙O的半径为4,∠AOB=90°,点P是线段OA上的一个动点(与点A、O不重合),将射线CP绕点C逆时针旋转90°,与OB相交于点Q,连接PQ,求出PQ的最小值.
19.如图所示,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为4,求a的值.
20.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.
(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;
(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.
参考答案
1.解:∵⊙O的半径为5,弦AB=8,点C是AB的中点,
∴OC⊥AB,AC=BC=4,OA=5,
∴OC===3,
故选:C.
2.解:连接OC交AB于D,连接OA,
∵点C为运行轨道的最低点,
∴OC⊥AB,
∴AD=AB=3(米),
在Rt△OAD中,OD===(米),
∴点C到弦AB所在直线的距离CD=OC﹣OD=(4﹣)米,
故选:B.
3.解:连接AB,OB,
∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm,
在Rt△ABE中,AE2+BE2=AB2,
即AB=,
∵OA=OC,OB=OC,OF⊥BC,
∴BF=FC,
∴OF=.
故选:D.
4.解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:
∵AB=24cm,
∴BD=AB=12(cm),
∵OB=OC=13cm,
在Rt△OBD中,OD===5(cm),
∴CD=OC﹣OD=13﹣5=8(cm),
即水的最大深度为8cm,
故选:B.
5.解:过O作OC⊥AB于C,连接OA,则∠OCA=90°,
∵MO=6,∠OMA=30°,
∴OC=MO=3,
在Rt△OCA中,由勾股定理得:AC===4,
∵OC⊥AB,OC过O,
∴BC=AC,
即AB=2AC=2×4=8,
故选:D.
6.解:过点O作OF⊥CD于点F,OG⊥AB于G,连接OB、OD、OE,如图所示:
则DF=CF,AG=BG=AB=3,
∴EG=AG﹣AE=2,
在Rt△BOG中,OG===2,
∴EG=OG,
∴△EOG是等腰直角三角形,
∴∠OEG=45°,OE=OG=2,
∵∠DEB=75°,
∴∠OEF=30°,
∴OF=OE=,
在Rt△ODF中,DF===,
∴CD=2DF=2;
故选:C.
7.解:连OC,如图,
∵C是的中点,∠AOB=120°,
∴∠AOC=∠BOC=60°,
又∵OA=OC=OB,
∴△OAC和△OBC都是等边三角形,
∴S四边形AOBC=2×=.
故选:D.
8.解:
过O作OE⊥AB于E,
则∠OEB=90°,AB=DC=3.2m,
由垂径定理得:AE=BE=m=1.6m,
在Rt△BEO中,∠BEO=90°,BE=1.6m,OB=3.4m,由勾股定理得:OE==3(m),
即连车带货一起最高为3m,
故选:A.
9.解:作OD⊥AB于D,连接OB,
∴AD=BD=AB=30cm,
∴OD===40(cm),
∴PD=PA+AD=70+30=100(cm),
∴OP==20(cm);
故答案为20cm.
方法二:
解:延长PO交圆于E;
∵AB=60cm,PB=70cm,
∴PA=130cm;
由割线定理,得:PB?PA=PC?PD;
设点P到圆心的距离是xcm,则有:
(x﹣50)(x+50)=70×130,
解得x=20cm.
故OP长为20cm.
故答案为20cm.
10.解:连接OD.
∵OA=OB=15,OC:BC=3:2,
∴BC=6,OC=9,
∵AB⊥DE,
∴CD=CE===12,
∴DE=2CD=24,
故答案为:24.
11.解:∵AB是⊙O的直径,OF⊥CD,
根据垂径定理可知:
CF=DF,
∵∠CEA=30°,
∴∠OEF=30°,
∴OE=2,EF=,
∴DF=DE﹣EF=5﹣,
∴CD=2DF=10﹣2.
故答案为:10﹣2.
12.解:如图,①当AB与CD在直径的一侧时,
在Rt△AOF中,
∵OA=25cm,AF=20cm,
∴OF=15cm.
同理OE=7cm,
∴平行线AB与CD的距离为15﹣7=8cm;
②当AB与CD不在直径的同一侧时,则其距离为15+7=22cm.
综上所述,弦AB与CD之间的距离为8cm或22cm.
故答案为:8cm或22cm.
13.解:连接OD,如图,
∵CD⊥OC,
∴∠DCO=90°,
∴CD==,
当OC的值最小时,CD的值最大,
而OC⊥AB时,OC最小,此时D、B两点重合,
∴CD=CB=AB=×1=,
即CD的最大值为,
故答案为:.
14.(1)证明:∵PG平分∠EPF,
∴∠DPO=∠APO,
∵OA∥PE,
∴∠DPO=∠AOP,
∴∠APO=∠AOP,
∴AP=AO;
(2)解:过O点作OH⊥AB于H,如图,则AH=BH=AB=4,
在Rt△AOH中,∵OA=5,AH=4,
∴OH==3,
∵AP=AO=5,
∴PH=PA+AH=9,
在Rt△POH中,OP==3.
15.(1)证明:连接AC,如图,
∵直径AB垂直于弦CD于点E,
∴=,
∴AC=AD,
∵过圆心O的线段CF⊥AD,
∴AF=DF,即CF是AD的中垂线,
∴AC=CD,
∴AC=AD=CD.
即△ACD是等边三角形,
∴∠FCD=30°,
在Rt△COE中,OE=OC,
∴OE=OB,
∴点E为OB的中点;
(2)解:∵△ACD是等边三角形,AB⊥CD,
∴∠CAE=30°,
∴CE=,
∵直径AB垂直于弦CD于点E,
∴CD=2CE=.
16.解:作B点关于MN的对称点B′,连接OB、OB′、AB′,AB′交MN于P′,如图,∵点A是半圆上一个三等分点,点B为的中点,
∴∠AON=60°,∠BON=30°,
∵B点和B′关于MN的对称,
∴∠B′ON=30°,
∴∠AOB′=90°,
∴△OAB′为等腰直角三角形,
∴AB′=OA=,
∵PA+PB=PA+PB′≥AB′(点A、P、B′共线时取等号),
∴PA+PB的最小值=AB′,
即PA+PB的最小值为.
17.解:(1)∵OD经过圆心O,OD⊥AC,
∴AD=DC,
同理:CE=EB,
∴DE是△ABC的中位线,
∴DE=AB,
∵AB=8,
∴DE=4.
(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,
∵OH经过圆心O,
∴AH=BH=AB,
∵AB=8,
∴AH=4,
在Rt△AHO中,AH2+OH2=AO2,
∴AO=5,即圆O的半径为5.
18.解:(1)连接CO.

∵═,
∴∠AOC=∠BOC,
∵D、E分别是半径OA、OB的中点,
∴,,
∴OD=OE,
在△ODC和△OEC中,
∵OD=OE,∠AOC=∠BOC,OC=OC,
∴△ODC≌△OEC(SAS)
∴CD=CE;
(2)当CP⊥OA时,∵∠AOB=90°,∠PCQ=90°,
∴∠CQO=90°,即CQ⊥OB.
∵∠AOC=∠BOC,
∴CP=CQ,
当CP与OA不垂直时,
如图,过点C作CM⊥OA,CN⊥OB,M、N为垂足.
∵∠AOC=∠BOC,
∴CM=CN,
又∵∠AOB=90°,
∴∠MCN=90°,
∴四边形CMON是正方形,
∵∠PCQ=90°,
∴∠PCM=∠QCN,
∴△PCM≌△QCN(AAS)
∴CP=CQ,
∴,
∴当CP取得最小值即CM的长时,PQ有最小值,
∴,PQ的最小值为4.
19.解:过P作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,如图,
∵⊙P的圆心坐标是(3,a),
∴OC=3,PC=a,
把x=3代入y=x得y=3,
∴D点坐标为(3,3),
∴CD=3,
∴△OCD为等腰直角三角形,
∴△PED也为等腰直角三角形,
∵PE⊥AB,
∴AE=BE=AB=×4=2,
在Rt△PBE中,PB=3,
∴PE==1,
∴PD=PE=,
∴a=3+.
20.解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.
∵AB∥CD,EF⊥AB,
∴EF⊥CD,
∴∠CEF=∠BFO=90°
∴AF=BF=x,DE=EC=2,
根据勾股定理可得:,
解得(舍弃)或,
∴BF=4,AB=2BF=8.
(2)如图2中,作CH⊥AB于H.
∵OB⊥OC,
∴∠A=∠BOC=45°,
∵AH⊥CH,
∴△ACH是等腰直角三角形,
∵AC=CH,
∵AB∥CD,EF⊥AB,
∴EF⊥CD,
∠CEF=∠EFH=∠CHF=90°,
∴四边形EFHC是矩形,
∴CH=EF,
在Rt△OEC中,∵EC=,OC=,
OE===2,
∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,
∴∠FOB=∠ECO,
∵OB=OC,
∴△OFB≌△CEO(AAS),
∴OF=EC=,
∴CH=EF=3,
∴AC=EF=6.