第2课 椭圆
【考点导读】
掌握椭圆的第二定义,能熟练运用两个定义解决椭圆的有关问题;
能解决椭圆有关的综合性问题.
【基础练习】
1.曲线与曲线的(D)
A 焦点相同 B 离心率相等 C准线相同 D 焦距相等
2.如果椭圆上的点A到右焦点的距离等于4,那么点A 到两条准线的距离分别是
3.椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是
4 离心率,一条准线为的椭圆的标准方程是
5.设椭圆上一点P到左准线的距离为10,F是该椭圆的左焦点,若点M满足,则__2___
【范例导析】
例1.已知点A的坐标是(1,1),F是椭圆的左焦点,点P在椭圆上移动,
(1)求的最小值并求取最小值时点P的坐标;
(2)求的最大值和最小值.
分析:此题与椭圆的焦点有关,考虑到椭圆的离心率为,因此第一问可以根据第二定义转化为点P到左准线的问题,而第二问不能根据第二问来转化,我们可以考虑第一定义.
解:由椭圆方程可知a=3,b=,则c=2,,
过P向椭圆的左准线作垂线,垂足为Q,,则据椭圆的第二定义知,∴.
从而=.易知当A、P、Q在同一条线上时, 最小,最小值为,此时点P.
(2)设椭圆右焦点为,则∴=,利用-≤≤∴≤6+,≥6-.
点拨:一般地,遇到有关焦点或准线问题,首先应考虑定义来解题,根据题目条件和所要求解的结论选择第一或第二定义.
例2.椭圆(a>b>0)的二个焦点F1(-c,0),F2(c,0),M是椭圆上一点,且。
(1)求离心率e的取值范围;
(2)当离心率e最小时,点N(0,3)到椭圆上一点的最远距离为,求此椭圆的方程。
分析:离心率与椭圆的基本量a、b、c有关,所以本题可以用基本量表示椭圆上点的坐标,再借助椭圆椭圆上点坐标的范围建立关于基本量的不等式,从而确定离心率的范围.
解:(1)设点M的坐标为(x,y),则,。由,得x2-c2+y2=0,即x2-c2=-y2。 ①
①又由点M在椭圆上,得y2=b2,代入①,得x2-c2,即。
∵0≤≤,∴0≤≤,即0≤≤1,0≤≤1,解得≤≤1。
又∵0<<1,∵≤≤1。
(2)当离心率取最小值时,椭圆方程可表示为。
设点H(x,y)是椭圆上的一点,则|HN|2=x2+(y-3)2=(2b2-2y2)+(y-3)2=- (y+3)2+2b2+18(-b≤y≤b)。若0<b<3,则0>-b>-3,当y=-b时,|HN|2有最大值b2+6b+9。由题意知:b2+6b+9=50,b=或b=-,这与0点拨:解几中求基本量a、b、c、e等取值范围的解题思路一般可以做如下考虑①建立目标函数,运用求函数值域的方法求解;②建立目标变量的不等式,解不等式求解.
例3.如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.
(1)求该弦椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,
求m的取值范围.
分析:第一问直接可有第一定义得出基本量a,从而写出方程;第二问涉及到焦半径问题,可以考虑利用第二定义的得出焦半径表达式,结合等差数列的定义解决;第三问建立m的函数表达式,转化为求函数值域.
解:(1)由椭圆定义及条件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b==3.
故椭圆方程为=1.
(2)由点B(4,yB)在椭圆上,得|F2B|=|yB|=.因为椭圆右准线方程为x=,离心率为,根据椭圆定义,有|F2A|=(-x1),|F2C|=(-x2),
由|F2A|、|F2B|、|F2C|成等差数列,得
(-x1)+(-x2)=2×,由此得出:x1+x2=8.
设弦AC的中点为P(x0,y0),则x0==4.
(3)解法一:由A(x1,y1),C(x2,y2)在椭圆上.
得
①-②得9(x12-x22)+25(y12-y22)=0,
即9×=0(x1≠x2)
将 (k≠0)代入上式,得9×4+25y0(-)=0
(k≠0)
即k=y0(当k=0时也成立).
由点P(4,y0)在弦AC的垂直平分线上,得y0=4k+m,
所以m=y0-4k=y0-y0=-y0.
由点P(4,y0)在线段BB′(B′与B关于x轴对称)的内部,
得-<y0<,所以-<m<.
解法二:因为弦AC的中点为P(4,y0),所以直线AC的方程为
y-y0=-(x-4)(k≠0) ③
将③代入椭圆方程=1,得
(9k2+25)x2-50(ky0+4)x+25(ky0+4)2-25×9k2=0
所以x1+x2==8,解得k=y0.(当k=0时也成立)
(以下同解法一).
点拨:本题涉及到弦的中点问题,既可以用点差法,也可以考虑将弦所在直线方程与曲线的方程联立方程组结合韦达定理解决.
反馈练习:
1.从集合{1,2,3…,11}中任选两个元素作为椭圆方程中的m和n,则能组成落在矩形区域B={(x,y)| |x|<11且|y|<9}内的椭圆个数为72
2.在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为
3.已知F1、F2为椭圆的两个焦点,过F1作倾斜角为的弦AB,则△F2AB的面积为
4.已知正方形,则以为焦点,且过两点的椭圆的离心率为
5.椭圆上的点P到它的左准线的距离是10,那么点P 到它的右焦点的距离是 12
6.设椭圆=1(a>b>0)的右焦点为F1,右准线为l1,若过F1且垂直于x轴的弦的长等于点F1到l1的距离,则椭圆的离心率是
7.若椭圆内有一点P(1,-1),F为右焦点,椭圆上有一点M,使最小,则点M为
8.设分别是椭圆()的左、右焦点,若在其右准线上存在使线段的中垂线过点,则椭圆离心率的取值范围是
9. 设为椭圆左、右焦点,过椭圆中心任作一条直线与椭圆交于两点,当四边形面积最大时,的值等于 2 .
10.椭圆上不同三点,,与焦点的距离成等差数列.
(1)求证;
(2)若线段的垂直平分线与轴的交点为,求直线的斜率.
证明:(1)由椭圆方程知,,.
由圆锥曲线的统一定义知:,
∴ .
同理 .
∵ ,且,
∴ ,
即 .
(2)因为线段的中点为,所以它的垂直平分线方程为
.
又∵点在轴上,设其坐标为,代入上式,得
又∵点,都在椭圆上,
∴
∴ .
将此式代入①,并利用的结论得
∴ .
11.已知椭圆,、为两焦点,问能否在椭圆上找一点,使到左准线的距离是与的等比中项?若存在,则求出点的坐标;若不存在,请说明理由.
解:假设存在,设,由已知条件得
,,∴,.
∵左准线的方程是,
∴.
又由焦半径公式知:
,
.
∵,
∴.
整理得.
解之得或. ①
另一方面. ②
则①与②矛盾,所以满足条件的点不存在.
12.我们把由半椭圆 与半椭圆 合成的曲线称作“果圆”,其中,,. 如图,设点,,是相应椭圆的焦点,,和,是“果圆” 与,轴的交点,是线段的中点.
(1)若是边长为1的等边三角形,求该
“果圆”的方程;
(2)设是“果圆”的半椭圆
上任意一点.求证:当取得最小值时,
在点或处;
(3)若是“果圆”上任意一点,求取得最小值时点的横坐标.
解:(1) ,
,
于是,
所求“果圆”方程为,.
(2)设,则
,
, 的最小值只能在或处取到.
即当取得最小值时,在点或处.
(3),且和同时位于“果圆”的半椭圆和半椭圆上,所以,由(2)知,只需研究位于“果圆”的半椭圆上的情形即可.
.
当,即时,的最小值在时取到,
此时的横坐标是.
当,即时,由于在时是递减的,的最小值在时取到,此时的横坐标是.
综上所述,若,当取得最小值时,点的横坐标是;若,当取得最小值时,点的横坐标是或.
例3
①
②
y
O
.
.
.
M
x
.
第12题