考前最后一轮基础知识巩固之第九章 第3课 双曲线

文档属性

名称 考前最后一轮基础知识巩固之第九章 第3课 双曲线
格式 zip
文件大小 148.8KB
资源类型 教案
版本资源
科目 数学
更新时间 2012-06-03 21:59:06

图片预览

文档简介

第3课 双曲线
【考点导读】
了解双曲线的定义、几何图形和标准方程,了解其几何性质
能用双曲线的标准方程和几何性质解决一些简单的实际问题.
【基础练习】
1.双曲线的虚轴长是实轴长的2倍,则
2. 方程表示双曲线,则的范围是
3.已知中心在原点,焦点在y轴的双曲线的渐近线方程为,则此双曲线的离心率

4. 已知焦点,双曲线上的一点到的距离差的绝对值等于,则双曲线的标准方程为
5.过双曲线的右焦点F2有一条弦PQ,|PQ|=7,F1是左焦点,那么△F1PQ的周长为
【范例导析】
例1. (1) 已知双曲线的焦点在轴上,并且双曲线上两点坐标分别为,求双曲线的标准方程
(2)求与双曲线共渐近线且过点的双曲线方程及离心率.
分析:由所给条件求双曲线的标准方程的基本步骤是:①定位,即确定双曲线的焦点在哪轴上;②定量,即根据条件列出基本量a、b、c的方程组,解方程组求得a、b的值;③写出方程.
解:(1)因为双曲线的焦点在轴上,所以设所求双曲线的标准方程为①;
∵点在双曲线上,∴点的坐标适合方程①。
将分别代入方程①中,得方程组:
将和看着整体,解得,
∴即双曲线的标准方程为。
点评:本题只要解得即可得到双曲线的方程,没有必要求出的值;在求解的过程中也可以用换元思想,可能会看的更清楚。
(2)解法一:双曲线的渐近线方程为:
当焦点在x轴时,设所求双曲线方程为
∵,∴ ①
∵在双曲线上
∴ ②
由①-②,得方程组无解
当焦点在y轴时,设双曲线方程为
∵,∴ ③
∵在双曲线上,∴ ④
由③④得,
∴所求双曲线方程为:且离心率
解法二:设与双曲线共渐近线的双曲线方程为:
∵点在双曲线上,∴
∴所求双曲线方程为:,即.
点评:一般地,在已知渐近线方程或与已知双曲线有相同渐近线的条件下,利用双曲线系方程求双曲线方程较为方便.通常是根据题设中的另一条件确定参数.
例2. 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上)
解:如图,
以接报中心为原点O,正东、正北方向为x轴、y轴正向,建立直角坐标系.设A、B、C分别是西、东、北观测点,则A(-1020,0),B(1020,0),C(0,1020)
设P(x,y)为巨响为生点,由A、C同时听到巨响声,得|PA|=|PB|,故P在AC的垂直平分线PO上,PO的方程为y=-x,因B点比A点晚4s听到爆炸声,故|PB|- |PA|=340×4=1360
由双曲线定义知P点在以A、B为焦点的双曲线上,
依题意得a=680, c=1020,
用y=-x代入上式,得,∵|PB|>|PA|,
答:巨响发生在接报中心的西偏北450距中心处.
例3.双曲线的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e的取值范围.
解:直线的方程为,即
由点到直线的距离公式,且,得到点(1,0)到直线的距离

同理得到点(-1,0)到直线的距离
由 即
于是得
解不等式,得 由于所以的取值范围是
点拨:本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.
反馈练习:
1.双曲线的渐近线方程为
2.已知双曲线的离心率为,焦点是,,则双曲线方程为
3.已知双曲线的两个焦点为,,P是此双曲线上的一点,且,,则该双曲线的方程是
4. 设P是双曲线上一点,双曲线的一条渐近线方程为,、分别是双曲线左右焦点,若=3,则=7
5.若表示焦点在y轴上的双曲线,则它的半焦距c的取值范围是
6.与椭圆共焦点且过点的双曲线的方程
7.已知双曲线的焦点为、,点M在双曲线上,且轴,则到直线F2M的距离为
8.已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形,若双曲线恰好平分正三角形的另两边,则双曲线的离心率是
9.P是双曲线的右支上一点,M、N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为9
10. (1)求中心在原点,对称轴为坐标轴经过点且离心率为的双曲线标准方程.
(2)求以曲线和的交点与原点的连线为渐近线,且实轴长为12的双曲线的标准方程.
解:(1)设所求双曲线方程为:,则,
∴,∴,∴所求双曲线方程为
(2)∵,∴或,∴渐近线方程为
当焦点在轴上时,由且,得.
∴所求双曲线方程为
当焦点在轴上时,由,且,得.
∴所求双曲线方程为
11.设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率.
分析:由两点式得直线的方程,再由双曲线中、、的关系及原点到直线的距离建立等式,从而解出的值.
解:由过两点,,得的方程为.
由点到的距离为,得.
将代入,平方后整理,得.
令,则.解得或.
而,有.故或.
因,故,
所以应舍去.故所求离心率.
说明:此题易得出错误答案:或.其原因是未注意到题设条件,从而离心率.而,故应舍去.
12.已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点.
(1)求双曲线方程;
(2)若点在双曲线上,求证:;
(3)对于(2)中的点,求的面积.
解:(1)由题意,可设双曲线方程为,又双曲线过点,解得
∴ 双曲线方程为;
(2)由(1)可知,,, ∴ ,
∴ ,, ∴ ,
又点在双曲线上, ∴ ,
∴ , 即;
(3)
∴的面积为6.
13.已知双曲线的左右两个焦点分别为、,P为双曲线左支上一点,它到左准线的距离为,且使、、成等比数列,求离心率的取值范围。
解:由双曲线的两个定义可得:,
∵≥∴≥
又因为, ∴≤0 ∴≤
y
x
o
A
B
C
P
例2
第13题
同课章节目录