考前最后一轮基础知识巩固之第八章 第3课 圆的方程

文档属性

名称 考前最后一轮基础知识巩固之第八章 第3课 圆的方程
格式 zip
文件大小 127.2KB
资源类型 教案
版本资源
科目 数学
更新时间 2012-06-04 15:33:03

图片预览

文档简介

第3课 圆的方程
【考点导读】
掌握圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆的方程;理解圆的标准方程与一般方程之间的关系,会进行互化。
本节内容主要考查利用待定系数法求圆的方程,利用三角换元或数形结合求最值问题,题型难度以容易题和中档题为主.
【基础练习】
1.已知点A(3,-2),B(-5,4),以线段AB为直径的圆的方程为(x + 1)2 + (y-1)2 = 25
2.过点A(1,-1)、B(-1,1)且圆心在直线x+y-2=0上的圆的方程是(x-1)2+(y-1)2=4
3.已知圆C的半径为2,圆心在轴的正半轴上,直线与圆C相切,则圆C的方程为
4.圆与y轴交于A、B两点,圆心为P,若∠APB=120°,则实数c值为_-11__
5.如果方程所表示的曲线关于直线对称,那么必有__D=E__
【范例导析】
设方程,若该方程表示一个圆,求m的取值范围及这时圆心的轨迹方程。
分析:配成圆的标准方程再求解
解:配方得: 该方程表示圆,则有,得,此时圆心的轨迹方程为,消去m,得,由得x=m+3所求的轨迹方程是,
注意:方程表示圆的充要条件,求轨迹方程时,一定要讨论变量的取值范围,如题中
变式1:方程表示圆,求实数a的取值范围,并求出其中半径最小的圆的方程。
解:原方程可化为
当a时,原方程表示圆。

当,所以半径最小的圆方程为
例2 求半径为4,与圆相切,且和直线相切的圆的方程.
分析:根据问题的特征,宜用圆的标准方程求解.
解:则题意,设所求圆的方程为圆.
圆与直线相切,且半径为4,则圆心的坐标为或.
又已知圆的圆心的坐标为,半径为3.
若两圆相切,则或.
(1)当时,,或(无解),故可得.
∴所求圆方程为,或.
(2)当时,,或(无解),故.
∴所求圆的方程为,或.
说明:对本题,易发生以下误解:
由题意,所求圆与直线相切且半径为4,则圆心坐标为,且方程形如.又圆,即,其圆心为,半径为3.若两圆相切,则.故,解之得.所以欲求圆的方程为,或.
上述误解只考虑了圆心在直线上方的情形,而疏漏了圆心在直线下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.
点评:在解决求圆的方程这类问题时,应当注意以下几点:(1)确定圆方程首先明确是标准方程还是一般方程;(2)根据几何关系(如本例的相切、弦长等)建立方程求得a、b、r或D、E、F;(3)待定系数法的应用,解答中要尽量减少未知量的个数.
设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
分析:注意挖掘题目的条件,充分利用圆的几何性质解决问题.
解法一:设圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为│b│,│a│.
由题设圆P截x轴所得劣弧对的圆心角为900,知圆P截x轴的弦长为,故r2=2b2
又圆P截y轴所得的弦长为2,所以有r2=a2+1.从而得2b2-a2=1.
又点P(a,b)到直线x 2y=0的距离为
所以5d2=│a-2b│2=a2+4b2-4ab
≥a2+4b2-2(a2+b2)=2b2-a2=1,
当且仅当a=b时上式等号成立,此时5d2=1,从而d取得最小值.
由此有
解此方程组得
由于r2=2b2知于是,所求圆的方程是:
(x-1)2+(y-1)2=2,或(x+1)2+(y+1)2=2.
解法二:同解法一得
将a2=2b2-1代入上式,整理得

把它看作b的二次方程,由于方程有实根,故判别式非负,即
△=8(5d2-1)≥0, 得 5d2≥1.
所以5d2有最小值1,从而d有最小值
将其代入②式得2b2±4b+2=0.解得b=±1.
将b=±1代入r2=2b2,得r2=2.由r2=a2+1得a=±1.
综上 a=±1,b=±1,r2=2.
由│a-2b│=1知a,b同号.于是,所求圆的方程是
(x-1)2+(y-1)2=2,或(x+1)2+(y+1)2=2.
点拨:求圆的方程通常有两类方法,一是几何法,即通过研究圆的性质、直线和圆、圆和圆的位置关系进而求得圆的基本量(圆心、半径)和圆的方程,二是代数法,即根据题意设出圆的方程,再利用条件得到有关方程系数的方程组,解方程组得到方程系数,从而求出圆的方程.
【例4】在平面直角坐标系中,已知圆心在第二象限、半径为的圆与直线相切于坐标原点.椭圆与圆的一个交点到椭圆两焦点的距离之和为.
(1)求圆的方程;
(2)试探究圆上是否存在异于原点的点,使到椭圆右焦点的距离等于线段的长.若存在,请求出点的坐标;若不存在,请说明理由.
分析:问题(2)可以转化为探求以右焦点F为顶点,半径为4的圆(x─4)2+y2=8与(1)所求的圆的交点数。
解: (1)设圆心坐标为(m,n)(m<0,n>0),则该圆的方程为(x-m)2+(y-n)2=8已知该圆与直线y=x相切,那么圆心到该直线的距离等于圆的半径,则
=2
即=4 ①
又圆与直线切于原点,将点(0,0)代入得
m2+n2=8 ②
联立方程①和②组成方程组解得
故圆的方程为(x+2)2+(y-2)2=8
(2)=5,∴a2=25,则椭圆的方程为 + =1
其焦距c==4,右焦点为(4,0),那么=4。
要探求是否存在异于原点的点Q,使得该点到右焦点F的距离等于的长度4,我们可以转化为探求以右焦点F为顶点,半径为4的圆(x─4)2+y2=8与(1)所求的圆的交点数。
通过联立两圆的方程解得x=,y=
即存在异于原点的点Q(,),使得该点到右焦点F的距离等于的长。
点拨:解决圆的综合问题时,一方面要充分利用圆的平面几何知识来解决问题,另一方面还要注意几何问题代数化的思想运用.
反馈练习:
1.关于x,y的方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示一个圆的充要条件是B=0且A=C≠0,D2+E2-4AF>0
2.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是(5,-1)
3.若两直线y=x+2k与y=2x+k+1的交点P在圆x2+y2=4的内部,则k的范围是
4.已知圆心为点(2,-3),一条直径的两个端点恰好落在两个坐标轴上,则这个圆的方程是
5.直线y=3x+1与曲线x2+y2=4相交于A、B两点,则AB的中点坐标是
6.方程表示的曲线是_两个半圆
7.圆关于直线的对称圆的方程是
8.如果实数x、y满足等式,那么的最大值是
9.已知点和圆,求一束光线从点A经x轴反射到圆周C的最短路程为___8___
10.求经过点A(5,2),B(3,2),圆心在直线2x─y─3=0上的圆的方程;
解:设圆心P(x0,y0),则有,
解得 x0=4, y0=5,
∴半径r=,
∴所求圆的方程为(x─4)2+(y─5)2=10
11. 一圆与y轴相切,圆心在直线x-3y=0上,且直线y=x截圆所得弦长为2,求此圆的方程 ( http: / / www. / wxc / )
解:因圆与y轴相切,且圆心在直线x-3y=0上,
故设圆方程为
又因为直线y=x截圆得弦长为2,
则有+=9b2,
解得b=±1 ( http: / / www. / wxc / )故所求圆方程为

点拨:(1)确定圆方程首先明确是标准方程还是一般方程;(2)待定系数法;(3)尽量利用几何关系求a、b、r或D、E、F.
12.在直角坐标系中,以为圆心的圆与直线相切.
(1)求圆的方程;
(2)圆与轴相交于两点,圆内的动点使成等比数列,求的取值范围.
解:(1)依题设,圆的半径等于原点到直线的距离,
即 .
得圆的方程为.
(2)不妨设.由即得

设,由成等比数列,得

即 .
由于点在圆内,故
由此得.
所以的取值范围为.
同课章节目录