考前最后一轮基础知识巩固之第十一章 第6课几何概型

文档属性

名称 考前最后一轮基础知识巩固之第十一章 第6课几何概型
格式 zip
文件大小 101.7KB
资源类型 教案
版本资源
科目 数学
更新时间 2012-06-04 15:33:03

图片预览

文档简介

第6课几何概型
【考点导读】
1.了解几何概型的基本特点.
2.会进行简单的几何概率的计算.
【基础练习】
1.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是 0.004
2. 取一根长度为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m的概率是
3. 在1万 km2的海域中有40 km2的大陆架贮藏着石油,假如在海域中任意一点钻探,钻到油层面的概率是
4. 如下图,在一个边长为3 cm的正方形内部画一个边长为2 cm的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是 .
5. 如下图,在直角坐标系内,射线OT落在60°的终边上,任作一条射线OA,则射线落在∠xOT内的概率是 .
【范例解析】
例1. 在等腰Rt△ABC中, (1)在斜边AB上任取一点M,求AM的长小于AC的长的概率.
(2)过直角顶点C在内作一条射线CM,与线段AB交于点M,求AM解:(1)在AB上截取AC′=AC,于是P(AM<AC)=P(AM<)
=.
(2) 在AB上截取AC′=AC,
于是P(AM<AC)
点评 (1)对于几何概型中的背景相同的问题,当等可能的角度不同时,其概率是不一样的(2)在利用几何概率公式计算概率时,必须注意d与D的测度单位的统一.
例2.平面上画了一些彼此相距2a的平行线,把一枚半径r解:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O向靠得最近的平行线引垂线OM,垂足为M,如图所示,这样线段OM长度(记作OM)的取值范围就是[o,a],只有当r<OM≤a时硬币不与平行线相碰,所以所求事件A的概率就是P(A)==
例3.将长为的棒随机折成3段,求3段构成三角形的概率.
解:设A=“3段构成三角形”,x,y分别表示其中两段的长度,则第3段的长度为.
则实验的全部结果可构成集合,要使3段构成三角形,当且仅当任意两段之和大于第三段,故所求结果构成的集合
所求的概率为
点评 用几何概型解题的一般步骤是:(1)适当选择观察角度;(2)把基本事件转化为与之相应的区域;(3)把事件A转化为与之对应的区域;(4)利用概率公式计算.
【反馈演练】
1. 两根相距6 m的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m的概率是
2. 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,此人等车时间不多于10分钟的概率 .
解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)= =,即此人等车时间不多于10分钟的概率为.
3.若x可以在的条件下任意取值,则x是负数的概率是 2/3 .
4. 在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是0.01.
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.
解:取出10毫升种子,其中“含有病种子”这一事件记为A,则
P(A)= ==0.01.
5.在区间上任取两实数a,b,则二次方程x2+2ax+b2=0的两根都为实数的概率1/2 .
6. 如下图,在一个边长为a,b(a>b>0)的矩形内画一个梯形,梯形上、下底分别为与,高为b,向该矩形内随机投一点,则所投的点落在梯形内部的概率为
7.某路公共汽车分钟一班准时到达某车站,求任一人在该车站等车时间少于分钟的概率(假定车到来后每人都能上).
解:可以认为人在任何时刻到站是等可能的.设上一班车离站时刻为,则该人到站的时刻的一切可能为,若在该车站等车时间少于分钟,则到站的时刻为,.
8.一个路口的红绿灯,红灯的时间为秒,黄灯的时间为秒,绿灯的时间为秒,当你到达路口时看见下列三种情况的概率各是多少
(1) 红灯 (2) 黄灯 (3) 不是红灯
解:总的时间长度为秒,设红灯为事件,黄灯为事件,
(1)出现红灯的概率
(2)出现黄灯的概率
(3)不是红灯的概率
9. 一海豚在水池中自由游弋,水池为长30 m,宽20 m的长方形,求海豚嘴尖离岸边不超过2 m的概率.
解:对于几何概型,关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.如下图,区域Ω是长30 m、宽20 m的长方形.图中阴影部分表示事件A:“海豚嘴尖离岸边不超过2 m”,问题可以理解为求海豚嘴尖出现在下图中阴影部分的概率.由于区域Ω的面积为30×20=600(m2),阴影A的面积为30×20-26×16=184(m2)
.∴P(A)=.
10.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.求两人能会面的概率.
【解】以7点钟作为计算时间的起点,设甲、乙分别在x分钟和y分钟到达,则样本空间为
,画成图为如图所示的正方形.
会面的充要条件是,即事件A={可以会面}所对应的区域是图中的阴影部分. 所以,
(第5题)
(第4题)
A
C
M
(2)
(1)
B
2a
r
o
M
0
l
l
0
20
20
60
60
同课章节目录