考前最后一轮基础知识巩固之第五章 第2课 等差、等比数列

文档属性

名称 考前最后一轮基础知识巩固之第五章 第2课 等差、等比数列
格式 zip
文件大小 115.9KB
资源类型 教案
版本资源
科目 数学
更新时间 2012-06-04 15:33:03

图片预览

文档简介

第2课 等差、等比数列
【考点导读】
掌握等差、等比数列的通项公式、前项和公式,能运用公式解决一些简单的问题;
理解等差、等比数列的性质,了解等差、等比数列与函数之间的关系;
注意函数与方程思想方法的运用。
【基础练习】
1.在等差数列{an}中,已知a5=10,a12=31,首项a1= -2 ,公差d= 3 。
2.一个等比数列的第3项与第4项分别是12与18,则它的第1项是,第2项是 8 。
3..某种细菌在培养过程中,每20分钟分裂一次(一个分裂为二个),经过3小时,这种细菌由1个可以繁殖成 512 个。
4.设是公差为正数的等差数列,若,,则。
5.公差不为0的等差数列{an}中,a2,a3,a6依次成等比数列,则公比等于 3 。
【范例导析】
例1.(1)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有
13 项。
(2)设数列{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 2 。
(3)设Sn是等差数列{an}的前n项和,若=,则= 。
解:(1)答案:13
法1:设这个数列有n项
∵ ∴
∴n=13
法2:设这个数列有n项

∴ ∴
又 ∴n=13
(2)答案:2 因为前三项和为12,∴a1+a2+a3=12,∴a2==4
又a1·a2·a3=48, ∵a2=4,∴a1·a3=12,a1+a3=8,
把a1,a3作为方程的两根且a1<a3,
∴x2-8x+12=0,x1=6,x2=2,∴a1=2,a3=6,∴选B.
(3)答案为。
点评:本题考查了等差数列的通项公式及前n项和公式的运用和学生分析问题、解决问题的能力。
例2.(1)已知数列为等差数列,且
(Ⅰ)求数列的通项公式;
(Ⅱ)证明
分析:(1)借助通过等差数列的定义求出数列的公差,再求出数列的通项公式,(2)求和还是要先求出数列的通项公式,再利用通项公式进行求和。
解:(1)设等差数列的公差为d,
由 即d=1。
所以即
(II)证明:因为,
所以
点评:该题通过求通项公式,最终通过通项公式解释复杂的不等问题,属于综合性的题目,解题过程中注意观察规律。
例3.已知数列的首项(是常数,且),(),数列的首项,()。
(1)证明:从第2项起是以2为公比的等比数列;
(2)设为数列的前n项和,且是等比数列,求实数的值;
(3)当a>0时,求数列的最小项。
分析:第(1)问用定义证明,进一步第(2)问也可以求出,第(3)问由的不同而要进行分类讨论。
解:(1)∵ ∴
(n≥2)
由得,,∵,∴ ,
即从第2项起是以2为公比的等比数列。
(2)
当n≥2时,
∵是等比数列, ∴(n≥2)是常数, ∴3a+4=0,即 。
(3)由(1)知当时,,
所以,所以数列为2a+1,4a,8a-1,16a,32a+7,……
显然最小项是前三项中的一项。
当时,最小项为8a-1; 当时,最小项为4a或8a-1;
当时,最小项为4a; 当时,最小项为4a或2a+1;
当时,最小项为2a+1。
点评:本题考查了用定义证明等比数列,分类讨论的数学思想,有一定的综合性。
备用题.1.(1)设{an}(n∈N*)是等差数列,Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是( C )
A.d<0 B.a7=0
C.S9>S5 D.S6与S7均为Sn的最大值
(2)等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为( C )
A.130 B.170 C.210 D.260
解:(1)答案:C;
由S50,
又S6=S7,∴a1+a2+…+a6=a1+a2+…+a6+a7,∴a7=0,
由S7>S8,得a8<0,而C选项S9>S5,即a6+a7+a8+a9>02(a7+a8)>0,
由题设a7=0,a8<0,显然C选项是错误的。
(2)答案:C
解法一:由题意得方程组,
视m为已知数,解得,
∴。
解法二:设前m项的和为b1,第m+1到2m项之和为b2,第2m+1到3m项之和为b3,则b1,b2,b3也成等差数列。
于是b1=30,b2=100-30=70,公差d=70-30=40。∴b3=b2+d=70+40=110
∴前3m项之和S3m=b1+b2+b3=210.
解法三:取m=1,则a1=S1=30,a2=S2-S1=70,从而d=a2-a1=40。
于是a3=a2+d=70+40=110.∴S3=a1+a2+a3=210。
点评:本题考查等差数列的基本知识,及灵活运用等差数列解决问题的能力,解法二中是利用构造新数列研究问题,等比数列也有类似性质.解法三中,从题给选择支获得的信息可知,对任意变化的自然数m,题给数列前3m项的和是与m无关的不变量,在含有某种变化过程的数学问题,利用不变量的思想求解,立竿见影。
2.设等比数列的前项和为,求证:
分析:涉及等比数列的前项和问题一定要注意考虑公比是否为1的问题。
证明略。(分公比两种情况分别利用公式带入验证即可。)
【反馈演练】
1.已知等差数列中,,则前10项的和= 210 。
2.在等差数列中,已知则= 42 。
3.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 3 。
4.如果成等比数列,则 3 , -9 。
5.设、是项数相同的两个等比数列,为非零常数,现有如下几个数列,其中必为等比数列的有 (3) 。
(1) (2) (3) (4)
6.已知等差数列的前项和为,若,且三点共线(该直线不过点),则等于 100 。
解:由题意得:a1+a200=1,故为100。
7.已知正数等比数列,若,则公比的取值范围是。
8.已知a,b,a+b成等差数列,a,b,ab成等比数列,且0(8,+∞)_______.
9.等差数列{an}共有2n+1项,其中奇数项之和为319,偶数项之和为290,则其中间项为__第11项a11=29_______.
10.已知a、b、c成等比数列,如果a、x、b和b、y、c都成等差数列,则=____2___.
11.设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n项和S10及T10.
解:∵{an}为等差数列,{bn}为等比数列,∴a2+a4=2a3, b2·b4=b32,
已知a2+a4=b3,b2·b4=a3, ∴b3=2a3,a3=b32, 得b3=2b32,
∵b3≠0, ∴b3=,a3=. 由a1=1,a3=,知{an}的公差d=-,
∴S10=10a1+d=-.
由b1=1,b3=, 知{bn}的公比q=或q=-,
12.已知数列{an}为等差数列,公差d≠0,由{an}中的部分项组成的数列a,a,…,a,…为等比数列,其中b1=1,b2=5,b3=17.
(1)求数列{bn}的通项公式;
(2)记Tn=Cb1+Cb2+Cb3+…+Cbn,求.
解:(1)由题意知a52=a1·a17,即(a1+4d)2=a1(a1+16d)a1d=2d2,
∵d≠0,∴a1=2d,数列{}的公比q==3,
∴=a1·3n-1 ① 又=a1+(bn-1)d= ②
由①②得a1·3n-1=·a1. ∵a1=2d≠0,∴bn=2·3n-1-1.
(2)Tn=Cb1+Cb2+…+Cbn=C (2·30-1)+C·(2·31-1)+…+C(2·3n-1-1)
=(C+C·32+…+C·3n)-(C+C+…+C)
=[(1+3)n-1]-(2n-1)= ·4n-2n+,
13.设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围;
(2)指出S1、S2、…、S12中哪一个值最大,并说明理由.
解:(1)依题意有:
解之得公差d的取值范围为-<d<-3.
(2)解法一:由d<0可知a1>a2>a3>…>a12>a13,因此,在S1,S2,…,S12中Sk为最大值的条件为:ak≥0且ak+1<0,即
∵a3=12, ∴, ∵d<0, ∴2-<k≤3-
∵-<d<-3,∴<-<4,得5.5<k<7.
因为k是正整数,所以k=6,即在S1,S2,…,S12中,S6最大.
解法二:由d<0得a1>a2>…>a12>a13,
因此若在1≤k≤12中有自然数k,使得ak≥0,且ak+1<0,则Sk是S1,S2,…,S12中的最大值。又2a7=a1+a13=S13<0, ∴a7<0, a7+a6=a1+a12=S12>0, ∴a6≥-a7>0
故在S1,S2,…,S12中S6最大.
解法三:依题意得:
最小时,Sn最大;
∵-<d<-3, ∴6<(5-)<6.5.
从而,在正整数中,当n=6时,[n- (5-)]2最小,所以S6最大.
点评:该题的第(1)问通过建立不等式组求解属基本要求,难度不高,入手容易.
第(2)问难度较高,为求{Sn}中的最大值Sk(1≤k≤12):思路之一是知道Sk为最大值的充要条件是ak≥0且ak+1<0;而思路之二则是通过等差数列的性质等和性探寻数列的分布规律,找出“分水岭”,从而得解;思路之三是可视Sn为n的二次函数,借助配方法可求解,它考查了等价转化的数学思想、逻辑思维能力和计算能力,较好地体现了高考试题注重能力考查的特点.
同课章节目录