考前最后一轮基础知识巩固之第七章

文档属性

名称 考前最后一轮基础知识巩固之第七章
格式 zip
文件大小 954.4KB
资源类型 教案
版本资源
科目 数学
更新时间 2012-06-04 15:34:31

文档简介

第1课 空间几何体
【考点导读】
1.观察认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;
2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图;
3.通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式;
4.了解球、棱柱、棱锥、台的表面积和体积的计算公式。
【基础练习】
1.一个凸多面体有8个顶点,①如果它是棱锥,那么它有 14 条棱, 8 个面;②如果它是棱柱,那么它有 12 条棱 6 个面。
2. 是正的斜二测画法的水平放置图形的直观图,若的面积为,那么的面积为。
3.(1)如图,在正四面体A-BCD中,E、F、G分别是三角形ADC、ABD、BCD的中心,则△EFG在该正四面体各个面上的射影所有可能的序号是 ③④ 。
(2)如图,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是图的 ②③ (要求:把可能的图的序号都填上).
4.一个圆锥的侧面积是其底面积的2倍,则该圆锥的母线与底面所成的角为 。
5.两个完全相同的长方体的长、宽、高分别为5cm,4cm,3cm,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是。
【范例导析】
例1.(1)下列结论中,正确的是 。
(1)各个面都是三角形的几何体是三棱锥
(2)以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥
(3)棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥
(4)圆锥的顶点与底面圆周上的任意一点的连线都是圆锥的母线
(2)下列命题中,假命题是 (1)(3) 。(选出所有可能的答案)
(1)有两个面互相平行,其余各个面都是平行四边形的多面体是棱柱
(2)四棱锥的四个侧面都可以是直角三角形
(3)有两个面互相平行,其余各面都是梯形的多面体是棱台
(4)若一个几何体的三视图都是矩形,则这个几何体是长方体
分析:准确理解几何体的定义,真正把握几何体的结构特征是解决概念题的关键。
(1)(4)是正确的。(1)中可以是把两个三棱锥叠放在一起构成的几何体,各面都是三角形,但不是三棱锥。(2)中要取决于三角形的形状,以及旋转方式,比如等腰直角三角形中以直角边为旋转轴进行旋转就不是圆锥。(3)中若棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形可知,若以正六边形为底面,侧棱长必然要大于底面边长。
(1)和(3)是错误的。(1)中将两个斜棱柱对接在一起就是反例。(3)中是不是棱台还要看侧棱的延长线是否交于一点。
点评:对于概念判断的类型,举反例是非常有效的方法。
例2.是正△ABC的斜二测画法的水平放置图形的直观图,若的面积为,那么△ABC的面积为_______________。
解析:。
点评:该题属于斜二测画法的应用,解题的关键在于建立实物图元素与直观图元素之间的对应关系。特别底和高的对应关系。
例3.多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A在平面内,其余顶点在的同侧,正方体上与顶点A相邻的三个顶点到的距离分别为1,2和4,P是正方体的其余四个顶点中的一个,则P到平面的距离可能是:
①3; ②4; ③5; ④6; ⑤7
以上结论正确的为____________________(写出所有正确结论的编号)
解析:如图,B、D、A1到平面的距离分别为1、2、4,则D、A1的中点到平面的距离为3,所以D1到平面的距离为6;B、A1的中点到平面的距离为,所以B1到平面的距离为5;则D、B的中点到平面的距离为,所以C到平面的距离为3;C、A1的中点到平面的距离为,所以C1到平面的距离为7;而P为C、C1、B1、D1中的一点,所以选①③④⑤。
点评:该题将计算蕴涵于射影知识中,属于难得的综合题目。
例4.(1)画出下列几何体的三视图
(2)某物体的三视图如下,试判断该几何体的形状
分析:三视图是从三个不同的方向看同一物体得到的三个视图。
解析:(1)这两个几何体的三视图分别如下:
(2)该几何体为一个正四棱锥。
点评:画三视图之前,应把几何体的结构弄清楚,选择一个合适的主视方向。一般先画主视图,其次画俯视图,最后画左视图。画的时候把轮廓线要画出来,被遮住的轮廓线要画成虚线。物体上每一组成部分的三视图都应符合三条投射规律。主视图反映物体的主要形状特征,主要体现物体的长和高,不反映物体的宽。而俯视图和主视图共同反映物体的长要相等。左视图和 俯视图共同反映物体的宽要相等。据此就不难得出该几何体的形状。
例5.如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)的球心O,且与BC,DC分别交于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则S1,S2的大小关系是 S1=S2 。
解析:连OA、OB、OC、OD,
则VA-BEFD=VO-ABD+VO-ABE+VO-BEFD
VA-EFC=VO-ADC+VO-AEC+VO-EFC
又VA-BEFD=VA-EFC,
而每个三棱锥的高都是原四面体的内切球的半径,
故SABD+SABE+SBEFD=SADC+SAEC+SEFC
又面AEF公共,故选C
点评:该题通过复合平面图形的分割过程,增加了题目处理的难度,求解棱锥的体积、表面积首先要转化好平面图形与空间几何体之间元素间的对应关系。
备用题:1。如图所示,在平行六面体ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=。
(1)求证:顶点A1在底面ABCD上的射影O在∠BAD的平分线上;
(2)求这个平行六面体的体积。
图2
解析:(1)如图2,连结A1O,则A1O⊥底面ABCD。作OM⊥AB交AB于M,
作ON⊥AD交AD于N,连结A1M,A1N。
易得A1M⊥AB,A1N⊥AD。∵∠A1AM=∠A1AN,
∴Rt△A1NA≌Rt△A1MA,∴A1M=A1N,
从而OM=ON。∴点O在∠BAD的平分线上。
(2)∵AM=AA1cos=3×= ∴AO==。
又在Rt△AOA1中,A1O2=AA12 - AO2=9-=,
∴A1O=,平行六面体的体积为。
2.如图1是一个几何体的三视图,想象它的几何结构特征,并说出它的名称.
变式题1.如图2是一个几何体的三视图(单位:cm)
(Ⅰ)画出这个几何体的直观图(不要求写画法);
(Ⅱ)求这个几何体的表面积及体积;
(Ⅲ)设异面直线与所成的角为,求.
解:(Ⅰ)这个几何体的直观图如图3所示.
(Ⅱ)这个几何体是直三棱柱.
由于底面的高为1,所以.
故所求全面积
      .
这个几何体的体积
(Ⅲ)因为,所以与所成的角是.
   在中,,
   故.
【反馈演练】
1.一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是。
2.如图,一个底面半径为R的圆柱形量杯中装有适量的水.若放入一个半径为r的实心铁球,水面高度恰好升高r,则=。
解析:水面高度升高r,则圆柱体积增加πR2·r。恰好是半径为r的实心铁球的体积,因此有πr3=πR2r。故。答案为。
点评:本题主要考查旋转体的基础知识以及计算能力和分析、解决问题的能力。
3.在△ABC中,AB=2,BC=1.5,∠ABC=120°(如图所示),若将△ABC绕直线BC旋转一周,则所形成的旋转体的体积是。
4.如图所示,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成相等的两部分,则母线与轴的夹角的余弦值为 。
5.若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是 六棱锥 。
6.正四棱柱的底面边长为,高为,一蚂蚁从顶点出发,沿正四棱柱的表面爬到顶点,那么这只蚂蚁所走过的最短路程为。
7.空间四边形中,,,分别是边上的点,且为平行四边形,则四边形的周长的取值范围是__________。
8.设棱长为4的平行六面体的体积为,分别是棱
上的点,且,则三棱锥的体积。
9.一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)菱形;(3)矩形;(4)正方形;(5)正六边形。其中正确的结论是____(2)(3)(4)(5)__________。(把你认为正确的序号都填上)
10.三棱锥中,,其余棱长均为1。
(1)求证:;
(2)求三棱锥的体积的最大值。
解:(1)取中点,∵与均为正三角形,
∴,
∴平面。

(2)当平面时,三棱锥的高为,
此时
11.已知圆锥的侧面展开图是一个半圆,它被过底面中心O1且平行于母线AB的平面所截,若截面与圆锥侧面的交线是焦参数(焦点到准线的距离)为p的抛物线.
(1)求圆锥的母线与底面所成的角;
(2)求圆锥的全面积.
解: (1)设圆锥的底面半径为R,母线长为l,
由题意得:,
即,
所以母线和底面所成的角为
(2)设截面与圆锥侧面的交线为MON,
其中O为截面与AC的交点,则OO1//AB且
在截面MON内,以OO1所在有向直线为y轴,O为原点,建立坐标系,
则O为抛物线的顶点,所以抛物线方程为x2=-2py,
点N的坐标为(R,-R),代入方程得:R2=-2p(-R),
得:R=2p,l=2R=4p.
∴圆锥的全面积为.
说明:将立体几何与解析几何相链接, 颇具新意, 预示了高考命题的新动向.
12.已知过球面上三点的截面和球心的距离为球半径的一半,且,求球的表面积。
解析:设截面圆心为,连结,设球半径为,
则,
在中,,
∴,
∴,
∴。
点评: 正确应用球的表面积公式,建立平面圆与球的半径之间的关系。
① ② ③ ④
A
B
C
D
A1
B1
C1
D1
A1
(2)
D
O
C
E
F
B
A
正视图
侧视图
图1
俯视图
正视图
侧视图
图2
俯视图
图3
P
A
B
C
M第4课 空间中的垂直关系
【考点导读】
1.掌握直线与平面、平面与平面垂直的判定定理和性质定理,并能用它们证明和解决有关问题。
2.线面垂直是线线垂直与面面垂直的枢纽,要理清楚它们之间的关系,学会互相转化,善于利用转化思想。
【基础练习】
1.“直线垂直于平面内的无数条直线”是“”的 必要 条件。
2.如果两个平面同时垂直于第三个平面,则这两个平面的位置关系是 平行或相交 。
3.已知是两个平面,直线若以①,②,③中两个为条件,另一个为结论构成三个命题,则其中正确命题的个数是 2 个。
4.在正方体中,与正方体的一条对角线垂直的面对角线的条数是 6 。
5.两个平面互相垂直,一条直线和其中一个平面平行,则这条直线和另一个平面的位置关系是 平行、相交或在另一个平面内 。
6.在正方体中,写出过顶点A的一个平面__AB1D1_____,使该平面与正方体的12条棱所在的直线所成的角均相等(注:填上你认为正确的一个平面即可,不必考虑所有可能的情况)。
【范例导析】
例1.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明PA//平面EDB; (2)证明PB⊥平面EFD;
解析:本小题考查直线与平面平行,直线与平面垂直基础知识,考查空间想象能力和推理论证能力.
证明:(1)连结AC,AC交BD于O,连结EO.
∵底面ABCD是正方形,∴点O是AC的中点
在中,EO是中位线,∴PA // EO
而平面EDB且平面EDB,
所以,PA // 平面EDB
(2)∵PD⊥底面ABCD且底面ABCD,∴
∵PD=DC,可知是等腰直角三角形,而DE是斜边PC的中线,
∴. ①
同样由PD⊥底面ABCD,得PD⊥BC.
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.
而平面PDC,∴. ②
由①和②推得平面PBC. 而平面PBC,∴
又且,所以PB⊥平面EFD.
例2.如图,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,CE =CA =2 BD ,M 是EA 的中点,
求证:(1)DE =DA ;(2)平面BDM ⊥平面ECA ;
(3)平面DEA ⊥平面ECA。
分析:(1)证明DE =DA ,可以通过图形分割,证明△DEF ≌△DBA。(2)证明面面垂直的关键在于寻找平面内一直线垂直于另一平面。由(1)知DM ⊥EA ,取AC 中点N ,连结MN 、NB ,易得四边形MNBD 是矩形。从而证明DM ⊥平面ECA。
证明:(1)如图,取EC 中点F ,连结DF。
∵ EC ⊥平面ABC ,BD ∥CE ,得DB ⊥平面ABC 。
∴ DB ⊥AB ,EC ⊥BC。
∵ BD ∥CE ,BD =CE =FC ,
则四边形FCBD 是矩形,DF ⊥EC。
又BA =BC =DF ,∴ Rt△DEF ≌Rt△ABD ,所以DE =DA。
(2)取AC 中点N ,连结MN 、NB ,
∵ M 是EA 的中点,∴ MN EC。
由BD EC ,且BD ⊥平面ABC ,可得四边形MNBD 是矩形,于是DM ⊥MN。
∵ DE =DA ,M 是EA 的中点,∴ DM ⊥EA .又EA MN =M ,
∴ DM ⊥平面ECA ,而DM 平面BDM ,则平面ECA ⊥平面BDM。
(3)∵ DM ⊥平面ECA ,DM 平面DEA ,
∴ 平面DEA ⊥平面ECA。
点评:面面垂直的问题常常转化为线面垂直、线线垂直的问题解决。
例3.如图,直三棱柱ABC—A1B1C1 中,AC =BC =1,
∠ACB =90°,AA1 =,D 是A1B1 中点.
求证C1D ⊥平面A1B ;(2)当点F 在BB1 上什么位置时,
会使得AB1 ⊥平面C1DF ?并证明你的结论。
分析:(1)由于C1D 所在平面A1B1C1 垂直平面A1B ,只要证明C1D 垂直交线A1B1 ,由直线与平面垂直判定定理可得C1D ⊥平面A1B。(2)由(1)得C1D ⊥AB1 ,只要过D 作AB1 的垂线,它与BB1 的交点即为所求的F 点位置。
证明:(1)如图,∵ ABC—A1B1C1 是直三棱柱,
∴ A1C1 =B1C1 =1,且∠A1C1B1 =90°。
又 D 是A1B1 的中点,∴ C1D ⊥A1B1 。
∵ AA1 ⊥平面A1B1C1 ,C1D 平面A1B1C1 ,
∴ AA1 ⊥C1D ,∴ C1D ⊥平面AA1B1B。
(2)解:作DE ⊥AB1 交AB1 于E ,延长DE 交BB1 于F ,连结C1F ,则AB1 ⊥平面C1DF ,点F 即为所求。
∵ C1D ⊥平面AA1BB ,AB1 平面AA1B1B ,
∴ C1D ⊥AB1 .又AB1 ⊥DF ,DF C1D =D ,
∴ AB1 ⊥平面C1DF 。
点评:本题(1)的证明中,证得C1D ⊥A1B1 后,由ABC—A1B1C1 是直三棱柱知平面C1A1B1 ⊥平面AA1B1B ,立得C1D ⊥平面AA1B1B。(2)是开放性探索问题,注意采用逆向思维的方法分析问题。
备用题.如图,边长为2的正方形ABCD中,
(1)点是的中点,点是的中点,将分别沿折起,使两点重合于点,求证:.
(2)当时,求三棱锥的体积.
变式题.如图,在矩形中,是的中点,以为折痕将向上折起,使为,且平面平面.求证:;
解:在中,,
在中,,
∵,
∴.
∵平面平面,且交线为,
∴平面.
∵平面,
∴.
【反馈演练】
1.下列命题中错误的是 (3) 。
(1)若一直线垂直于一平面,则此直线必垂直于这一平面内所有直线
(2)若一平面经过另一平面的垂线,则两个平面互相垂直
(3)若一条直线垂直于平面内的一条直线,则此直线垂直于这一平面
(4)若平面内的一条直线和这一平面的一条斜线的射影垂直,则它也和这条斜线垂直
2.设是空间的不同直线或不同平面,且直线不在平面内,下列条件中能保证“若
,且”为真命题的是 ①③④ (填所有正确条件的代号)
①x为直线,y,z为平面 ②x,y,z为平面
③x,y为直线,z为平面 ④x,y为平面,z为直线
⑤x,y,z为直线
3.二面角α—a—β的平面角为120°,在面α内,AB⊥a于B,AB=2在平面β内,CD⊥a
于D,CD=3,BD=1,M是棱a上的一个动点,则AM+CM的最小值为 。
4.已知三棱锥中,顶点在底面的射影是三角形的内心,关于这个三棱锥有三个命题:①侧棱;②侧棱两两垂直;③各侧面与底面所成的二面角相等。其中错误的是 ①② 。
5.在三棱锥的四个面中,直角三角形最多可以有_____4____个。
6.若的中点到平面的距离为,点到平面的距离为,则点到平面 的距离为_2或14________。
7.三棱锥中,侧棱两两垂直,底面内一点到三个侧面的距离分别是,那么__7______。
8.在球面上有四个点P、A、B、C,如果PA、PB、PC两两互相垂直,且PA=PB=PC=a,
那么这个球面的表面积是 .
9.命题A:底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥。
命题A的等价命题B可以是:底面为正三角形,且 的三棱锥是正三棱锥。
答案:侧棱相等(或侧棱与底面所成角相等……)
10.α、β是两个不同的平面,m、n是平面α及β之外的两条不同直线.给出四个论断:
①m⊥n ②α⊥β ③n⊥β ④m⊥α 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题: 。
答案:m⊥α,n⊥β,α⊥βm⊥n或m⊥n,m⊥α,n⊥βα⊥β
11.已知三棱锥P—ABC中,PC⊥底面ABC,AB=BC,
D、F分别为AC、PC的中点,DE⊥AP于E.
(1)求证:AP⊥平面BDE;
(2)求证:平面BDE⊥平面BDF;
(3)若AE∶EP=1∶2,求截面BEF分三棱锥P—ABC所成两部分的体积比.
解: (1)∵PC⊥底面ABC,BD平面ABC,∴PC⊥BD.
由AB=BC,D为AC的中点,得BD⊥AC.又PC∩AC=C,∴BD⊥平面PAC. 又PA平面、PAC,∴BD⊥PA.由已知DE⊥PA,DE∩BD=D,∴AP⊥平面BDE.
(2)由BD⊥平面PAC,DE平面PAC,得BD⊥DE.由D、F分别为AC、PC的中点,得DF//AP.
由已知,DE⊥AP,∴DE⊥DF. BD∩DF=D,∴DE⊥平面BDF.
又DE平面BDE,∴平面BDE⊥平面BDF.
(3)设点E和点A到平面PBC的距离分别为h1和h2.则
h1∶h2=EP∶AP=2∶3,
故截面BEF分三棱锥P—ABC所成两部分体积的比为1∶2或2∶1
点评:值得注意的是, “截面BEF分三棱锥P—ABC所成两部分的体积比”并没有说明先后顺序, 因而最终的比值答案一般应为两个,不要犯这种“会而不全”的错误.
12.在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F。
(1)求证:四边形EFCD为直角梯形;
(2)设SB的中点为M,当的值是多少时,能使△DMC
为直角三角形?请给出证明.
解:(1)∵ CD∥AB,AB平面SAB ∴CD∥平面SAB
面EFCD∩面SAB=EF,
∴CD∥EF ∵
又面
∴ 平面SAD,∴又
为直角梯形
(2)当时,为直角三角形 .
,
平面平面.
在中,为SB中点,.
平面平面 为直角三角形。第3课 空间中的平行关系
【考点导读】
1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。
2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。
3.要能灵活的对“线线平行”、“线面平行”和“面面平行”进行转化。
【基础练习】
1.若为异面直线,直线c∥a,则c与b的位置关系是 异面或相交 。
2.给出下列四个命题:
①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.
③若直线与同一平面所成的角相等,则互相平行.
④若直线是异面直线,则与都相交的两条直线是异面直线.
其中假命题的个数是 4 个。
3.对于任意的直线l与平面a,在平面a内必有直线m,使m与l 垂直 。
4. m和n是分别在两个互相垂直的面α、β内的两条直线,α与β交于l,m和n与l既不垂直,也不平行,那么m和n的位置关系是 既不可能垂直,也不可能平行 。
5. 已知a、b、c是三条不重合的直线,α、β、r是三个不重合的平面,下面六个命题:
①a∥c,b∥ca∥b;②a∥r,b∥ra∥b;③α∥c,β∥cα∥β;
④α∥r,β∥rα∥β;⑤a∥c,α∥ca∥α;⑥a∥r,α∥ra∥α.
其中正确的命题是 ①④ 。
【范例导析】
空间四边形ABCD中,P、Q、R分别AB、AD、CD 的中点,平面PQR交BC于S ,
求证:四边形PQRS为平行四边形。
证明:∵PQ为AB、AD中点 ∴PQ//BD
又PQ平面BCD ,BD平面BCD ∴ PQ//平面BCD
又平面PQR∩平面BCD=RS , PQ平面RQR ∴ PQ//RS
∵R为DC中点,∴ S为BC中点,
∴PQ// RS 且PQ= RS ∴ PQRS 为平行四边形
点评:灵活运用线面平行的判定定理和性质定理,“线线平行”与“线面平行”的转化是证平行关系的常用方法。
变式题:如图,在四面体ABCD中,截面EFGH是平行四边形.
求证:AB∥平面EFG.
证明 :∵面EFGH是截面.
∴点E,F,G,H分别在BC,BD,DA,AC上.
∴EH 面ABC,GF 面ABD,
由已知,EH∥GF.∴EH∥面ABD.
又 ∵EH 面BAC,面ABC∩面ABD=AB
∴EH∥AB.
∴AB∥面EFG.
例2. 如图,在正方体ABCD—A1B1C1D1中,点N在BD上,点M在B1C上,并且CM=DN.
求证:MN∥平面AA1B1B.
分析:“线线平行”、“线面平行”、“面面平行”是可以
互相转化的。本题可以采用任何一种转化方式。
简证:法1:把证“线面平行”转化为证“线线平行”。
即在平面ABB1A1内找一条直线与MN平行,如图所示作平行线即可。
法2:把证“线面平行”转化为证“线线平行”。连CN并延长交直线BA于点P,
连B1P,就是所找直线,然后再设法证明MN∥B1P.
法3:把证“线面平行”转化为证“面面平行”。
过M作MQ//BB1交BC于B1,连NQ,则平面MNQ与平面ABB1A1平行,
从而证得MN∥平面ABB1A1.
点评:证明线面或面面平行的时候一定要注意相互的转化,非常灵活。
例3.已知:a、b是异面直线,a平面,b平面,a∥,b∥.
求证: ∥.
证法1:在a上任取点P,
显然点P不在直线b上.于是b和点P确定平面 .
且与有公共点P ∴ ∩=b′且b′和a交于P,
∵ b∥, ∴ b∥b′ ∴ b′∥, 而a∥
这样内相交直线a和b′都平行于
∴ ∥.
证法2:设AB是a、b的公垂线段,过AB和b作平面,
则∩=b′,过AB和a作平面,则∩=a′.
a∥a∥a′ b∥b∥b′
∴AB⊥aAB⊥a′,AB⊥bAB⊥b′
于是AB⊥ 且AB⊥ ,∴ ∥.
【反馈演练】
1. 对于平面M与平面N, 有下列条件: ①M、N都垂直于平面Q; ②M、N都平行于平面Q; ③ M内不共线的三点到N的距离相等; ④ l, M内的两条直线, 且l // M, m // N; ⑤ l, m是异面直线,且l // M, m // M; l // N, m // N, 则可判定平面M与平面N平行的条件的个数是: 2个 。
2.对于平面和共面的直线、下列命题中真命题是 (3)。
(1)若则     (2)若则
(3)若则     (4)若、与所成的角相等,则
3. 设a、b是两条异面直线,那么下列四个命题中的假命题是 (2) 。
(1)经过直线a有且只有一个平面平行于直线b
(2)经过直线a有且只有一个平面垂直于直线b
(3)存在分别经过直线a和b的两个互相平行的平面
(4)存在分别经过直线a和b的两个互相垂直的平面
4.关于直线a、b、l及平面M、N,下列命题中正确的是(4) 。
(1)若a∥M,b∥M,则a∥b (2)若a∥M,b⊥a,则b⊥M
(3)若aM,bM,且l⊥a,l⊥b,则l⊥M (4)若a⊥M,a∥N,则M⊥N
5.“任意的,均有”是“任意,均有”的 充要条件 。
6.在正方体AC1中,过A1C且平行于AB的截面是 面A1B1CD .
7.在长方体ABCD—A1B1C1D1中,经过其对角线BD1的平面分别与棱AA1,CC1相交于E,F两点,则四边形EBFD!的形状为 平行四边形 。
8.正方体ABCD_A1B1C1D1的棱长为2,点M是BC的中点,点P是平面ABCD内的一个动点,且满足PM=2,P到直线A1D1的距离为,则点P的轨迹为 双曲线 。
9.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是。
10. 已知P为平行四边形ABCD所在平面外一点,M为PB的中点,
求证:PD∥平面MAC.
证明 连AC交BD于O,连MO,
则MO为△PBD的中位线,
∴PD∥MO,∵PD平面MAC,MO平面MAC,
∴PD∥平面MAC.
11.如图,已知是平行四边形所在平面外一点,、分别是、的中点(1)求证:平面;(2)若,, 求异面直线与所成的角的大小
略证:(1)取PD的中点H,连接AH,
为平行四边形
(2): 连接AC并取其中点为O,连接OM、ON,则OM平行且等于BC的一半,ON平行且等于PA的一半,所以就是异面直线与所成的角,由,得,OM=2,ON=
所以,即异面直线与成的角
12.两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求证:MN∥平面BCE。
证法一:作MP⊥BC,NQ⊥BE,P、Q为垂足,
则MP∥AB,NQ∥AB。
∴MP∥NQ,又AM=NF,AC=BF,
∴MC=NB,∠MCP=∠NBQ=45°
∴Rt△MCP≌Rt△NBQ
∴MP=NQ,故四边形MPQN为平行四边形
∴MN∥PQ
∵PQ平面BCE,MN在平面BCE外,
∴MN∥平面BCE。
证法二:如图过M作MH⊥AB于H,则MH∥BC,

连结NH,由BF=AC,FN=AM,得
∴ NH//AF//BE
由MH//BC, NH//BE得:平面MNH//平面BCE
∴MN∥平面BCE。
A
B
C
D
N
F
E
M
A11
B11
D11
C11
b′
20
20
正视图
20
侧视图
10
10
20
俯视图第2课 平面的性质与直线的位置关系
【考点导读】
1.掌握平面的基本性质,能够画出空间两条直线的各种位置关系,能够根据图形想象它们之间的位置关系。
2.掌握两条直线之间的平行与垂直的有关问题,并能进行解决和证明相关问题。
3.理解反证法证明的思路,会用反证法进行相关问题的证明。
【基础练习】
1 下面是一些命题的叙述语,其中命题和叙述方法都正确的是 (3) 。
(1)∵,∴. (2)∵,∴.
(3)∵,∴. (4)∵,∴.
2.下列推断中,错误的是 (4) 。
(1)
(2),A,B,C不共线重合
(3)
(4)
3.判断下列命题的真假,真的打“√”,假的打“×”
(1)空间三点可以确定一个平面 ( )
(2)两个平面若有不同的三个公共点,则两个平面重合( )
(3)两条直线可以确定一个平面( )
(4)若四点不共面,那么每三个点一定不共线( )
(5)两条相交直线可以确定一个平面( )
(6)三条平行直线可以确定三个平面( )
(7)一条直线和一个点可以确定一个平面( )
(8)两两相交的三条直线确定一个平面( )
⑴×⑵×⑶×⑷√⑸√⑹×⑺×⑻×
4.如右图,点E是正方体的棱的中点,则过点E与直线和都相交的直线的条数是: 1 条
5.右图是正方体平面展开图,在这个正方体中
①BM与ED平行;②CN与BE是异面直线;③CN与BM成60 角;
④DM与BN垂直.以上四个命题中,正确命题的序号是 ③④ 。
6.完成下列证明,已知直线a、b、c不共面,它们相交于点P,Aa,Da,Bb,Ec
求证:BD和AE是异面直线
证明:假设__ 共面于,则点A、E、B、D都在平面_ _内
Aa,Da,∴__γ. Pa,∴P__.
Pb,Bb,Pc,Ec ∴_ _, __,这与____矛盾
∴BD、AE__________
答案:假设BD、AE共面于,则点A、E、B、D都在平面 内。
∵Aa,Da,∴ a . ∵Pa,P .
∵Pb,Bb,Pc,Ec. ∴ b ,c ,这与a、b、c不共面矛盾
∴BD、AE是异面直线翰林
【范例导析】
例1.已知,从平面外一点引向量

(1)求证:四点共面;
(2)平面平面.
分析 :证明四点共面可以采用平面向量中的平面向量基本定理证明,
也可以转化为直线共面的条件即几何证法。
解:法一:(1)∵四边形是平行四边形,∴,
∵,
∴共面;
(2)∵,又∵,

所以,平面平面.
法二:(1)

∴ 同理 又 ∴
∴共面;
(2)由(1)知:,从而可证
同理可证,所以,平面平面.
点评:熟练掌握定理是证明的关键,要学会灵活运用。
例2.已知空间四边形ABCD.
(1)求证:对角线AC与BD是异面直线;
(2)若AC⊥BD,E,F,G,H分别这四条边AB,BC,CD,DA的中点,试判断四边形EFGH的形状;
(3)若AB=BC=CD=DA,作出异面直线AC与BD的公垂线段.翰林汇
分析:证明两条直线异面通常采用反证法。
证明:(1)(反证法)假设AC与BD不是异面直线,则AC与BD共面,
所以A、B、C、D四点共面
这与空间四边形ABCD的定义矛盾
所以对角线AC与BD是异面直线
(2)解:∵E,F分别为AB,BC的中点,∴EF//AC,且EF=AC.
同理HG//AC,且HG=AC.∴EF平行且相等HG,∴EFGH是平行四边形.
又∵F,G分别为BC,CD的中点,∴FG//BD,∴∠EFG是异面直线AC与BD所成的角.
∵AC⊥BD,∴∠EFG=90o.∴EFGH是矩形.
(3)作法取BD中点E,AC中点F,连EF,则EF即为所求.
点评:在空间四边形中我们通常会遇到上述类似的问题,取中点往往是很有效的方法,特别是遇到等腰三角形的时候。
例3.如图,已知E,F分别是正方体的棱和棱上的点,且,求证:四边形是平行四边形
简证:由可以证得≌
所以 又可以由正方体的性质证明
所以四边形是平行四边形
变式题:如图,已知、分别是正方体的棱和棱的中点.
(Ⅰ)试判断四边形的形状;
(Ⅱ)求证:平面平面.
解(Ⅰ)如图,取的中点,连结、.
∵、分别是和的中点,
∴,
在正方体中,有, ∴,
∴四边形是平行四边形,∴.
又、分别是、的中点,∴,∴四边形为平行四边形,
∴.故.∴四边形是平行四边形.
又≌,∴,故四边形为菱形.
(Ⅱ)连结、、. ∵四边形为菱形,∴.
在正方体中,有,
∴平面.又平面,∴.
又,∴平面.
又平面,故平面平面
例4:如图,已知平面,且是垂足,试判断直线与的位置关系?并证明你的结论.
解:与是异面直线。
可采用反证法进行证明。
变式题1:如图,已知平面,且是垂足.
(Ⅰ)求证:平面;
(Ⅱ)若,试判断平面与平面的位置关系,并证明你的结论.
解:(Ⅰ)因为,所以.
同理.
又,故平面.
(Ⅱ)平面平面。证明如下:设与平面的交点为,
连结、.因为平面,所以,
所以是二面角的平面角.
又,所以,即.
在平面四边形中,,
所以.故平面平面.
备用题:(1)已知异面直线a,b所成的角为70,则过空间一定点O,与两条异面直线a,b都成60角的直线有 条
(2)异面直线a,b所成的角为,空间中有一定点O,过点O有3条直线与a,b所成角都是60,则的取值可能是 。
A.30 B.50 C.60 D.90
解析:(1)过空间一点O分别作∥a,∥b。
将两对对顶角的平分线绕O点分别在竖直平面内转动,总能得到与 都成60角的直线。故过点 O与a,b都成60角的直线有4条。
(2)过点O分别作∥a、∥b,则过点O有三条直线与a,b所成角都为60,等价于过点O有三条直线与所成角都为60,其中一条正是角的平分线。从而可知为60。
点评:该题以学生对异面直线所成的角会适当转化,较好的考察了空间想象能力。
【反馈演练】
1.判断题(对的打“√”,错的打“×”)
(1)垂直于两条异面直线的直线有且只有一条 ( )
(2)两线段AB、CD不在同一平面内,如果AC=BD,AD=BC,则AB⊥CD( )
(3)在正方体中,相邻两侧面的一对异面的对角线所成的角为60 ( )
(4)四边形的一边不可能既和它的邻边垂直,又和它的对边垂直 ( )
答案:(1)× (2)× (3)√ (4)×
2.定点P不在△ABC所在平面内,过P作平面α,使△ABC的三个顶点到α的距离相等,这样的平面共有 4 个。
3.P为矩形ABCD所在平面外一点,且PA⊥平面ABCD,P到B,C,D三点的距离分别是,,,则P到A点的距离是 1 。
4.直角三角形ABC的斜边AB在平面α内,直角顶点C在平面α外,C在平面α内的射影为C1,且C1AB,则△C1AB为 钝角三角形 。
5.已知四点,无三点共线,则可以确定 1个或4个 平面。
6.某刺猬有2009根刺,当它蜷缩成球时滚到平面上,任意相邻的三根刺都可支撑住身体,且任意四根刺的刺尖不共面,问该刺猬蜷缩成球时,共有 4014 种不同的支撑身体的方式。
【答案】4014.当有n根刺时有种支撑法,n = 4,5, 6,… ,
则或
∴n = 4,5,6,…, 为等差数列,
∵ ∴,∴ 。
7.在正方体中,写出过顶点A的一个平面,使该平面与正方体的12条棱所在的直线所成的角均相等(注:填上你认为正确的一个平面即可,不必考虑所有可能的情况)。
8.P为所在平面外一点,PA、PB、PC与平面ABC所的角均相等,又PA与BC垂直,那么的形状可以是 。
①正三角形②等腰三角形③非等腰三角形④等腰直角三角形
【答案】由题意可知的外心在BC边的高线上,故一定有AB=AC选(1)(2)(4)。
9.给出以下四个命题:(1)若空间四点不共面,则其中无三点共线;(2)若直线上有一点在平面外,则该直线在平面外;(3)若直线a,b,c中,a与b共面且b与c共面,则a与c共面;(4)两两相交的三条直线共面。其中所有正确命题的序号是 (1)(2) 。
10.三个平面α,β,γ两两相交,a,b,c是三条交线。
(1)若,求证:a,b,c三线共点;
(2)若,用反证法证明直线a,b,c互相平行。
证明:(1)设
则∴ ∴a,b,c三线共点于。
(2)假设不平行,∵共面 ∴可设
由(1)可知:a,b,c三线共点于,与已知条件矛盾。
∴ ∴a,b,c互相平行。
11.如图,已知(A,B不重合)
过A在平面α内作直线AC,过B在平面β内作直线BD。
求证:AC和BD是异面直线。
证明:(反证法)若AC和BD不是异面直线,
设确定平面γ,则由题意可知:平面α和γ都过AC和AC外一点B,所以两平面重合。
同理可证平面β和γ也重合,所以平面α和β也重合。
这与已知条件平面α和β相交矛盾。
所以AC和BD是异面直线。
12.如图,在四面体ABCD中作截面PQR,若PQ,CB的延长线交于M,RQ,DB的延长线交于N,RP,DC的延长线交于K。求证:M,N,K三点共线。
证明:∵,
∴M是平面PQR与平面BCD的一个公共点
即M在平面PQR与平面BCD的交线上。
同理可证N,K也在该交线上。
∴M,N,K三点共线。
点评:利用两平面交线的唯一性,是证明多点共线的常用方法。
E
A
F
B
C
M
N
D
α
β
D
B
C
A
A
K
N
M
R
Q
P
D
C
B第七章 立体几何初步
【知识图解】
【方法点拨】
立体几何研究的是现实空间,认识空间图形,可以培养学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。空间的元素是点、线、面、体,对于线线、线面、面面的位置关系着重研究它们之间的平行与垂直关系,几何体着重研究棱柱、棱锥和球。在复习时我们要以下几点:
1.注意提高空间想象能力。在复习过程中要注意:将文字语言转化为图形,并明确已知元素之间的位置关系及度量关系;借助图形来反映并思考未知的空间形状与位置关系;能从复杂图形中逻辑的分析出基本图形和位置关系,并借助直观感觉展开联想与猜想,进行推理与计算。
2.归纳总结,分门别类。从知识上可以分为:平面的基本性质、线线、线面、面面的平行与垂直、空间中角与距离的计算。
3.抓主线,攻重点。针对一些重点内容加以训练,平行和垂直是位置关系的核心,而线面垂直又是核心的核心,角与距离的计算已经降低要求。
4.复习中要加强数学思想方法的总结与提炼。立体几何中蕴含着丰富的思想方法,如:将空间问题转化成平面图形来解决、线线、线面与面面关系的相互转化、空间位置关系的判断及角与距离的求解转化成空间向量的运算。
空间几何体
构成几何体
的基本元素
柱、锥、台、球的特征
直观认识线面平行与垂直
表面积与体积
中心投影与平行投影
直观图与三视图的画法
点、线、面之间的位置关系
平面的基本性质
确定平面的位置关系
空间中的平行关系
直线与直线的平行关系
直线与平面平行的判断及性质
平面与平面平行的判断及性质
空间中的垂直关系
直线与平面垂直的判断及性质
平面与平面垂直的判断及性质
直线与直线的垂直关系本章自主检测
一.填空题
1.如果直线与平面的一条垂线垂直,那么与的位置关系是 在平面内或者∥ 。
2.侧棱长为2的正三棱锥,若其底面周长为9,则该正三棱锥的体积是。
3.一个四面体的所有棱长都是,四个顶点在同一个球面上,则此球的表面积为 。
4.若、表示直线,表示平面,则下列命题中,正确的个数为 3个 。
① ② ③ ④
5.已知a、b、c是三条不重合直线,、、是三个不重合的平面,下列命题:
⑴a∥c,b∥ca∥b;⑵a∥,b∥a∥b;⑶c∥,c∥∥;⑷∥,∥∥;
⑸a∥c,∥ca∥;⑹a∥,∥a∥。其中正确的命题是 ⑴、⑷ 。
6.三平面两两垂直,他们的三条交线交于点O,P到三个面的距离分别为3、4、5,则OP=。
7.若棱锥底面面积为,平行于底面的截面面积是,底面和这个截面的距离是,则棱锥的高为 30cm 。
8.在三棱锥的四个面中,直角三角形最多可以有__4_____个。
9.如图,在四棱锥P-ABCD中,E为CD上的动点,四边形ABCD为 AB∥CD 时,体积
恒为定值(写上你认为正确的一个答案即可).
10.用一个与正方体的各面都不平行的平面去截正方体,截得的截面是四边形的图形可能是下列选项中的 _①③④___。(把所有符合条件的图形序号填入).
  ①矩形 ②直角梯形 ③菱形 ④正方形
11.已知是异面直线,那么:
①必存在平面,过且与平行;  ②必存在平面,过且与 垂直;
③必存在平面,与,都垂直;  ④必存在平面,与,的距离都相等.
其中正确的结论是 ①④ 。
12.正四棱柱的底面边长为,高为,一蚂蚁从顶点出发,沿正四棱柱的表面爬到顶点,那么这只蚂蚁所走过的最短路程为 。
13.若的中点到平面的距离为,点到平面的距离为,则点到平面的距离为
2或14_____。
14.已知正方体ABCD-,则该正方体的体积、四棱锥-ABCD的体积以及该正方体的外接球的体积之比为。
二、解答题:本大题共5小题,共76分.解答应写出文字说明,证明过程或演算步骤.
15.(本小题满分14分)四棱锥P-ABCD的顶点P在底面ABCD上的投影恰好是A,此四棱锥的三视图如图:
(1) 根据图中的信息,在四棱锥P-ABCD的侧面、底面和棱中,请把符合要求的结论填写在空格处(每空只要求填一种):
一对互相垂直的异面直线
一对互相垂直的平面
  ③一对互相垂直的直线和平面
(2) 计算四棱锥P-ABCD的表面积.
解:(1)①


(2)
16.(本小题满分14分)已知正方体,是底对角线的交点.
 证明:(1)面; (2)面.
证明:(1)连结,设 连结,
  是正方体,是平行四边形.
且 .
又分别是的中点,且.
是平行四边形 .
面,面

(2)面 .
又, , .
同理可证, 又,面 .
17.(本小题满分16分)如图为正方体ABCD-A1B1C1D1切去一个
三棱锥B1—A1BC1后得到的几何体.
(1) 画出该几何体的正视图;
(2) 若点O为底面ABCD的中心,求证:直线D1O∥平面A1BC1;
(3). 求证:平面A1BC1⊥平面BD1D.
解:(1)该几何体的正视图为:
(2)将其补成正方体ABCD-A1B1C1D1,设B1D1和A1C1交于点O1,连接O1B,
依题意可知,D1O1∥OB,且D1O1=OB,即四边形D1OB O1为平行四边形,
则D1O∥O1B,因为BO1平面BA1C1,D1O平面BA1C1,所以有直线D1O∥平面BA1C1;
(3)在正方体ABCD-A1B1C1D1中,DD1⊥平面A1B1C1D1,
则DD1⊥A1C1, 另一方面,B1D1⊥A1C1,
又∵DD1∩B1D1= D1,∴A1C1⊥平面BD1D,
∵A1C1平面A1BC1,则平面A1BC1⊥平面BD1D.
18.(本小题满分16分)如图,在多面体ABCDE中,AE⊥ABC,BD∥AE,
且AC=AB=BC=BD=2,AE=1,F在CD上(不含C, D两点)
(1)求多面体ABCDE的体积;
(2)若F为CD中点,求证:EF⊥面BCD;
(3)当的值= 时,能使AC ∥平面EFB,并给出证明。
解:(1)设AB中点为H,则由AC=AB=BC=2,可得CH⊥AB且CH=.
又BD∥AE,所以BD与AE共面.
又AE⊥面ABC,所以平面ABDE⊥平面ABC.
所以CH⊥平面ABDE,即CH为四棱锥C-ABDE的高.
故四棱锥C-ABDE的体积为VC-ABDE=SABDE·CH=[(1+2)×2×]=.
(2)取BC中点G,连FG,AG.
因为AE⊥面ABC,BD∥AE,所以BD⊥面ABC.
又AG面ABC,所以BD⊥AG.
又AC=AB,G是BC的中点,所以AG⊥BC,所以AG平面BCD.
又因为F是CD的中点且BD=2,所以FG∥BD且FG=BD=1,所以FG∥AE.
又AE=1,所以AE=FG,所以四边形AEFG是平行四边形,
所以EF∥AG,所以EF⊥BCD.
(3)=2(证明过程略)。
19.(本小题满分16分)
如图,在正方体ABCD-A1B1C1D1中,棱长为a,E为棱CC1上的的动点.
(1)求证:A1E⊥BD;
(2)当E恰为棱CC1的中点时,求证:平面A1BD⊥平面EBD;
(3)求。
证明:(1)连AC,A1C1
正方体AC1中,AA1平面ABCD AA1BD
正方形ABCD, ACBD且ACAA1=A
BD平面ACC1A1 且ECC1 A1E平面ACC1A1 BDA1E
(2)设ACBD=O,则O为BD的中点,连A1O,EO
由(1)得BD平面A1ACC1 BDA1O,BDEO
即为二面角A1-BD-E的平面角。
AB=a,E为CC1中点 A1O= A1E= EO=
A1O2+OE2=A1E2 A1OOE
平面A1BD平面BDE
(3)由(2)得A1O平面BDE 且A1O=
V=
A
B
C
E
D
F
同课章节目录