第3课 空间中的平行关系
【考点导读】
1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。
2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。
3.要能灵活的对“线线平行”、“线面平行”和“面面平行”进行转化。
【基础练习】
1.若为异面直线,直线c∥a,则c与b的位置关系是 异面或相交 。
2.给出下列四个命题:
①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.
③若直线与同一平面所成的角相等,则互相平行.
④若直线是异面直线,则与都相交的两条直线是异面直线.
其中假命题的个数是 4 个。
3.对于任意的直线l与平面a,在平面a内必有直线m,使m与l 垂直 。
4. m和n是分别在两个互相垂直的面α、β内的两条直线,α与β交于l,m和n与l既不垂直,也不平行,那么m和n的位置关系是 既不可能垂直,也不可能平行 。
5. 已知a、b、c是三条不重合的直线,α、β、r是三个不重合的平面,下面六个命题:
①a∥c,b∥ca∥b;②a∥r,b∥ra∥b;③α∥c,β∥cα∥β;
④α∥r,β∥rα∥β;⑤a∥c,α∥ca∥α;⑥a∥r,α∥ra∥α.
其中正确的命题是 ①④ 。
【范例导析】
空间四边形ABCD中,P、Q、R分别AB、AD、CD 的中点,平面PQR交BC于S ,
求证:四边形PQRS为平行四边形。
证明:∵PQ为AB、AD中点 ∴PQ//BD
又PQ平面BCD ,BD平面BCD ∴ PQ//平面BCD
又平面PQR∩平面BCD=RS , PQ平面RQR ∴ PQ//RS
∵R为DC中点,∴ S为BC中点,
∴PQ// RS 且PQ= RS ∴ PQRS 为平行四边形
点评:灵活运用线面平行的判定定理和性质定理,“线线平行”与“线面平行”的转化是证平行关系的常用方法。
变式题:如图,在四面体ABCD中,截面EFGH是平行四边形.
求证:AB∥平面EFG.
证明 :∵面EFGH是截面.
∴点E,F,G,H分别在BC,BD,DA,AC上.
∴EH 面ABC,GF 面ABD,
由已知,EH∥GF.∴EH∥面ABD.
又 ∵EH 面BAC,面ABC∩面ABD=AB
∴EH∥AB.
∴AB∥面EFG.
例2. 如图,在正方体ABCD—A1B1C1D1中,点N在BD上,点M在B1C上,并且CM=DN.
求证:MN∥平面AA1B1B.
分析:“线线平行”、“线面平行”、“面面平行”是可以
互相转化的。本题可以采用任何一种转化方式。
简证:法1:把证“线面平行”转化为证“线线平行”。
即在平面ABB1A1内找一条直线与MN平行,如图所示作平行线即可。
法2:把证“线面平行”转化为证“线线平行”。连CN并延长交直线BA于点P,
连B1P,就是所找直线,然后再设法证明MN∥B1P.
法3:把证“线面平行”转化为证“面面平行”。
过M作MQ//BB1交BC于B1,连NQ,则平面MNQ与平面ABB1A1平行,
从而证得MN∥平面ABB1A1.
点评:证明线面或面面平行的时候一定要注意相互的转化,非常灵活。
例3.已知:a、b是异面直线,a平面,b平面,a∥,b∥.
求证: ∥.
证法1:在a上任取点P,
显然点P不在直线b上.于是b和点P确定平面 .
且与有公共点P ∴ ∩=b′且b′和a交于P,
∵ b∥, ∴ b∥b′ ∴ b′∥, 而a∥
这样内相交直线a和b′都平行于
∴ ∥.
证法2:设AB是a、b的公垂线段,过AB和b作平面,
则∩=b′,过AB和a作平面,则∩=a′.
a∥a∥a′ b∥b∥b′
∴AB⊥aAB⊥a′,AB⊥bAB⊥b′
于是AB⊥ 且AB⊥ ,∴ ∥.
【反馈演练】
1. 对于平面M与平面N, 有下列条件: ①M、N都垂直于平面Q; ②M、N都平行于平面Q; ③ M内不共线的三点到N的距离相等; ④ l, M内的两条直线, 且l // M, m // N; ⑤ l, m是异面直线,且l // M, m // M; l // N, m // N, 则可判定平面M与平面N平行的条件的个数是: 2个 。
2.对于平面和共面的直线、下列命题中真命题是 (3)。
(1)若则 (2)若则
(3)若则 (4)若、与所成的角相等,则
3. 设a、b是两条异面直线,那么下列四个命题中的假命题是 (2) 。
(1)经过直线a有且只有一个平面平行于直线b
(2)经过直线a有且只有一个平面垂直于直线b
(3)存在分别经过直线a和b的两个互相平行的平面
(4)存在分别经过直线a和b的两个互相垂直的平面
4.关于直线a、b、l及平面M、N,下列命题中正确的是(4) 。
(1)若a∥M,b∥M,则a∥b (2)若a∥M,b⊥a,则b⊥M
(3)若aM,bM,且l⊥a,l⊥b,则l⊥M (4)若a⊥M,a∥N,则M⊥N
5.“任意的,均有”是“任意,均有”的 充要条件 。
6.在正方体AC1中,过A1C且平行于AB的截面是 面A1B1CD .
7.在长方体ABCD—A1B1C1D1中,经过其对角线BD1的平面分别与棱AA1,CC1相交于E,F两点,则四边形EBFD!的形状为 平行四边形 。
8.正方体ABCD_A1B1C1D1的棱长为2,点M是BC的中点,点P是平面ABCD内的一个动点,且满足PM=2,P到直线A1D1的距离为,则点P的轨迹为 双曲线 。
9.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是。
10. 已知P为平行四边形ABCD所在平面外一点,M为PB的中点,
求证:PD∥平面MAC.
证明 连AC交BD于O,连MO,
则MO为△PBD的中位线,
∴PD∥MO,∵PD平面MAC,MO平面MAC,
∴PD∥平面MAC.
11.如图,已知是平行四边形所在平面外一点,、分别是、的中点(1)求证:平面;(2)若,, 求异面直线与所成的角的大小
略证:(1)取PD的中点H,连接AH,
为平行四边形
(2): 连接AC并取其中点为O,连接OM、ON,则OM平行且等于BC的一半,ON平行且等于PA的一半,所以就是异面直线与所成的角,由,得,OM=2,ON=
所以,即异面直线与成的角
12.两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求证:MN∥平面BCE。
证法一:作MP⊥BC,NQ⊥BE,P、Q为垂足,
则MP∥AB,NQ∥AB。
∴MP∥NQ,又AM=NF,AC=BF,
∴MC=NB,∠MCP=∠NBQ=45°
∴Rt△MCP≌Rt△NBQ
∴MP=NQ,故四边形MPQN为平行四边形
∴MN∥PQ
∵PQ平面BCE,MN在平面BCE外,
∴MN∥平面BCE。
证法二:如图过M作MH⊥AB于H,则MH∥BC,
∴
连结NH,由BF=AC,FN=AM,得
∴ NH//AF//BE
由MH//BC, NH//BE得:平面MNH//平面BCE
∴MN∥平面BCE。
A
B
C
D
N
F
E
M
A11
B11
D11
C11
b′
20
20
正视图
20
侧视图
10
10
20
俯视图