4.5 增长速度的比较-【新教材】人教B版(2019)高中数学必修第二册练习(Word含答案解析)

文档属性

名称 4.5 增长速度的比较-【新教材】人教B版(2019)高中数学必修第二册练习(Word含答案解析)
格式 docx
文件大小 98.5KB
资源类型 教案
版本资源 人教B版(2019)
科目 数学
更新时间 2021-08-18 11:41:03

图片预览

文档简介

第四章指数函数、对数函数与幂函数
4.5 增长速度的比较
课后篇巩固提升
基础达标练
1.函数y=从x=到x=2的平均变化率为(  )
A.2
B.
C.
D.
2.(多选题)某公司的盈利y(元)和时间x(天)的函数关系是y=f(x),假设>0(x1>x0≥0)恒成立,且=10,=1,则这些数据说明后10天与前10天比较下列说法错误的是(  )
A.公司已经亏损
B.公司的盈利在增加,增加的幅度变大
C.公司在亏损且亏损幅度变小
D.公司的盈利在增加,增加的幅度变小
3.若函数f(x)=从1到a的平均变化率为,则实数a的值为(  )
A.10
B.9
C.8
D.7
4.若函数y=log3x在[a,a+1](a>0)上的平均变化率大于1,则a的取值范围为     .?
5.婴儿从出生到第24个月的体重变化如图,则婴儿体重在第    年增长较快.?
6.已知函数f(x)=3x2+2,求函数f(x)在区间[x0,x0+Δx]上的平均变化率,并求当x0=2,Δx=0.1时平均变化率的值.
能力提升练
1.若函数y=x2在区间[x0,x0+Δx]上的平均变化率为k1,在[x0-Δx,x0]上的平均变化率为k2,则k1与k2的大小关系是(  )
A.k1>k2
B.k1C.k1=k2
D.k1与k2的大小关系不确定
2.f(x)=3x与f(x)=3x在区间[a,a+1]上的平均变化率分别为k1,k2,当k2>k1时,a的取值范围为(  )
A.(0,+∞)
B.(-∞,0)
C.
D.
3.(多选题)(2019河北正定中学期中)甲、乙、丙、丁四个物体同时从同一点出发向同一个方向运动,其路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为f1(x)=2x-1,f2(x)=x3,f3(x)=x,f4(x)=log2(x+1),则下列结论中正确的是(  )
A.当x>1时,甲走在最前面
B.当x>1时,乙走在最前面
C.当01时,丁走在最后面
D.丙不可能走在最前面,也不可能走在最后面
4.如图表示物体甲、乙在时间0到t1范围内,路程的变化情况,则下列说法正确的是    .?
①在0到t0范围内,甲的平均速度大于乙的平均速度;
②在0到t0范围内,甲的平均速度小于乙的平均速度;
③在t0到t1范围内,甲的平均速度大于乙的平均速度;
④在t0到t1范围内,甲的平均速度小于乙的平均速度.
素养培优练
 某学校为了实现60万元的生源利润目标,准备制订一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且奖金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但奖金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=log5x,y=1.02x
,其中哪个模型符合该校的要求?
第四章指数函数、对数函数与幂函数
4.5 增长速度的比较
课后篇巩固提升
基础达标练
1.函数y=从x=到x=2的平均变化率为(  )
A.2
B.
C.
D.
解析.
答案B
2.(多选题)某公司的盈利y(元)和时间x(天)的函数关系是y=f(x),假设>0(x1>x0≥0)恒成立,且=10,=1,则这些数据说明后10天与前10天比较下列说法错误的是(  )
A.公司已经亏损
B.公司的盈利在增加,增加的幅度变大
C.公司在亏损且亏损幅度变小
D.公司的盈利在增加,增加的幅度变小
解析平均变化率为正说明盈利是增加的,平均变化率变小说明增加的幅度变小了,但还是增加的,故D正确,ABC错误.
答案ABC
3.若函数f(x)=从1到a的平均变化率为,则实数a的值为(  )
A.10
B.9
C.8
D.7
解析f(x)=从1到a的平均变化率为,解得a=9.
答案B
4.若函数y=log3x在[a,a+1](a>0)上的平均变化率大于1,则a的取值范围为     .?
解析因为
=log3>1=log33,a>0,
所以1+>3,所以0答案
5.婴儿从出生到第24个月的体重变化如图,则婴儿体重在第    年增长较快.?
解析∵=0.625,
=0.25,∴,
故第1年婴儿体重的平均变化率大,婴儿体重增长较快.
答案1
6.已知函数f(x)=3x2+2,求函数f(x)在区间[x0,x0+Δx]上的平均变化率,并求当x0=2,Δx=0.1时平均变化率的值.
解∵f(x)=3x2+2,
∴f(x0)=3+2,f(x0+Δx)=3(x0+Δx)2+2=3+6x0Δx+3(Δx)2+2,
∴f(x0+Δx)-f(x0)=6x0Δx+3(Δx)2,
∴f(x)在区间[x0,x0+Δx]上的平均变化率为=6x0+3Δx,
∴当x0=2,Δx=0.1时,平均变化率为6×2+3×0.1=12.3.
能力提升练
1.若函数y=x2在区间[x0,x0+Δx]上的平均变化率为k1,在[x0-Δx,x0]上的平均变化率为k2,则k1与k2的大小关系是(  )
A.k1>k2
B.k1C.k1=k2
D.k1与k2的大小关系不确定
解析由题意结合函数的解析式有:
k1==2x0+Δx,
k2==2x0-Δx,
则k1-k2=4Δx.
因为Δx大于零,所以k1>k2.
答案A
2.f(x)=3x与f(x)=3x在区间[a,a+1]上的平均变化率分别为k1,k2,当k2>k1时,a的取值范围为(  )
A.(0,+∞)
B.(-∞,0)
C.
D.
解析对f(x)=3x,=3,对f(x)=3x,=2×3a,由2×3a>3,得a>log3.所以a∈.
答案D
3.(多选题)(2019河北正定中学期中)甲、乙、丙、丁四个物体同时从同一点出发向同一个方向运动,其路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为f1(x)=2x-1,f2(x)=x3,f3(x)=x,f4(x)=log2(x+1),则下列结论中正确的是(  )
A.当x>1时,甲走在最前面
B.当x>1时,乙走在最前面
C.当01时,丁走在最后面
D.丙不可能走在最前面,也不可能走在最后面
解析路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为f1(x)=2x-1,f2(x)=x3,f3(x)=x,f4(x)=log2(x+1),它们相应的函数模型分别是指数型函数、幂函数、一次函数和对数型函数模型.对于A,当x=2时,f1(2)=3,f2(2)=8,∴该结论不正确;对于B,∵指数型的增长速度大于幂函数的增长速度,∴x>1时,甲总会超过乙的,∴该结论不正确;对于C,根据四种函数的变化特点,对数型函数的变化是先快后慢,当x=1时,甲、乙、丙、丁四个物体重合,从而可知,当01时,丁走在最后面,∴该结论正确;对于D,结合对数型和指数型函数的图像变化情况,可知丙不可能走在最前面,也不可能走在最后面,∴该结论正确.
答案CD
4.如图表示物体甲、乙在时间0到t1范围内,路程的变化情况,则下列说法正确的是    .?
①在0到t0范围内,甲的平均速度大于乙的平均速度;
②在0到t0范围内,甲的平均速度小于乙的平均速度;
③在t0到t1范围内,甲的平均速度大于乙的平均速度;
④在t0到t1范围内,甲的平均速度小于乙的平均速度.
解析在0到t0范围内,甲、乙的平均速度都为,故①②错误,在t0到t1范围内,甲的平均速度为,乙的平均速度为.因为s2-s0>s1-s0,t1-t0>0,所以,故③正确,④错误.
答案③
素养培优练
 某学校为了实现60万元的生源利润目标,准备制订一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且奖金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但奖金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=log5x,y=1.02x
,其中哪个模型符合该校的要求?
解作出函数y=3,y=0.2x,y=log5x,y=1.02x的图像(如图所示).观察图像可知,在区间[5,60]上,y=0.2x,y=1.02x的图像都有一部分在直线y=3的上方,只有y=log5x的图像始终在y=3和y=0.2x的下方,这说明只有按模型y=log5x进行奖励才符合学校的要求.