2021-2022学年苏科版八年级数学上册《2.5等腰三角形的轴对称性》
能力达标专题提升训练(附答案)
1.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )
A.50°
B.80°
C.50°或80°
D.40°或65°
2.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为( )
A.15°
B.30°
C.45°
D.60°
3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是( )
A.∠B=∠C
B.AD⊥BC
C.AD平分∠BAC
D.AB=2BD
4.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为( )
A.5
B.6
C.7
D.8
5.下列三角形:
①有两个角等于60°;
②有一个角等于60°的等腰三角形;
③三个外角(每个顶点处各取一个外角)都相等的三角形;
④一腰上的中线也是这条腰上的高的等腰三角形.
其中是等边三角形的有( )
A.①②③
B.①②④
C.①③
D.①②③④
6.如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出( )
A.7个
B.6个
C.4个
D.3个
7.△ABC是等边三角形,D,E,F为各边中点,则图中共有正三角形( )
A.2个
B.3个
C.4个
D.5个
8.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有( )
A.2个
B.4个
C.6个
D.8个
9.如图,已知等边△AEB和等边△BDC在线段AC同侧,则下面错误的是( )
A.△ABD≌△EBC
B.△NBC≌△MBD
C.DM=DC
D.∠ABD=∠EBC
10.一个等腰三角形的两边长分别为4,8,则它的周长为( )
A.12
B.16
C.20
D.16或20
11.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )
A.15°
B.30°
C.45°
D.60°
12.如图,∠MAN=63°,进行如下操作:以射线AM上一点B为圆心,以线段BA长为半径作弧,交射线AN于点C,连接BC,则∠BCN的度数是( )
A.54°
B.63°
C.117°
D.126°
13.如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为( )
A.2
B.3
C.4
D.5
14.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为
.
15.如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB=
cm.
16.△ABC中,AB=AC,∠A=∠C,则∠B=
度.
17.如图,点P是等边△ABC内一点,∠ACP=∠PBC,∠BPC=
°.
18.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为
.
19.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是
.
20.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.
求证:△ABC是等腰三角形.
21.已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE.
求证:AC﹣AB=2BE.
22.如图,在△ABC中,∠A=120°,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,求证:△DEF是等边三角形.
23.已知:如图,在△ABC中,AD∥BC,AD平分外角∠EAC,求证:AB=AC.
24.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.
求证:△BDE是等腰三角形.
参考答案
1.解:如图所示,△ABC中,AB=AC.
有两种情况:
①顶角∠A=50°;
②当底角是50°时,
∵AB=AC,
∴∠B=∠C=50°,
∵∠A+∠B+∠C=180°,
∴∠A=180°﹣50°﹣50°=80°,
∴这个等腰三角形的顶角为50°和80°.
故选:C.
2.解:在△ABD和△BCE中,
,
∴△ABD≌△BCE,
∴∠1=∠CBE,
∵∠2=∠1+∠ABE,
∴∠2=∠CBE+∠ABE=∠ABC=60°.
故选:D.
3.解:∵△ABC中,AB=AC,D是BC中点
∴∠B=∠C,(故A正确)
AD⊥BC,(故B正确)
∠BAD=∠CAD(故C正确)
无法得到AB=2BD,(故D不正确).
故选:D.
4.解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,
∴∠DBO=∠OBC,∠ECO=∠OCB,
∵DE∥BC,
∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,
∴DB=DO,OE=EC,
∵DE=DO+OE,
∴DE=BD+CE=5.
故选:A.
5.解:①两个角为60度,则第三个角也是60度,则其是等边三角形,故正确;
②这是等边三角形的判定2,故正确;
③三个外角相等则三个内角相等,则其是等边三角形,故正确;
④根据线段的垂直平分线的性质.可以证明三边相等,故正确.
所以都正确.
故选:D.
6.解:如图所示,分别以A、B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C3、C4、C5、C6、C7即为第三个顶点的位置;作线段AB的垂直平分线,垂直平分线未经过格点.
故以AB为一边,第三个顶点也在格点上的等腰三角形可以作出7个.
故选:A.
7.因为△ABC为等边三角形,所以AB=BC=AC,
又因为D,E,F为各边中点,所以AE=EB=BF=FC=CD=DA;
又因为DE,DF,EF分别为中位线,所以DE=BC,EF=AC,DF=AB,
即DE=EF=DF.所以AE=EB=BF=FC=CD=DA=DE=EF=FD.
所以此图中所有的三角形均为等边三角形.
因此应选择5个,
故选:D.
8.解:第1个点在AC上,作线段AB的垂直平分线,交AC于点P,则有PA=PB;
第2个点是以A为圆心,以AB长为半径截取AP=AB,交AC延长线上于点P;
第3个点是以A为圆心,以AB长为半径截取AP=AB,在上边于CA延长线上交于点P;
第4个点是以B为圆心,以BA长为半径截取BP=BA,与AC的延长线交于点P;
第5个点是以B为圆心,以BA长为半径截取BP=BA,与BC在左边交于点P;
第6个点是以A为圆心,以AB长为半径截取AP=AB,与BC在右边交于点P;
∴符合条件的点P有6个点.
故选:C.
9.解:A、可以利用SAS验证,正确;
B、可以利用AAS验证,正确;
C、可证∠MBN=60°,若DM=DC=DB,则△DMB为等边三角形,即∠BDM=60°
∵∠EAB=∠DBC,∴AE∥BD.∴∠BDM=∠EAD=60°.与已知不符,错误;
D、可由∠ABE,∠DBC同加一个∠DBE得到,正确.
所以错误的是第三个.故选C.
10.解:①当4为腰时,4+4=8,故此种情况不存在;
②当8为腰时,8﹣4<8<8+4,符合题意.
故此三角形的周长=8+8+4=20.
故选:C.
11.解:∵等边三角形ABC中,AD⊥BC,
∴BD=CD,即:AD是BC的垂直平分线,
∵点E在AD上,
∴BE=CE,
∴∠EBC=∠ECB,
∵∠EBC=45°,
∴∠ECB=45°,
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠ACE=∠ACB﹣∠ECB=15°,
故选:A.
12.解:由作图可知BA=BC,
∴∠A=∠BCA=63°,则∠BCN=180°﹣∠BCA=117°,
故选:C.
13.解:∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵ED∥BC,
∴∠CBD=∠BDE,
∴∠ABD=∠BDE,
∴BE=DE,
△AED的周长=AE+DE+AD=AE+BE+AD=AB+AD,
∵AB=3,AD=1,
∴△AED的周长=3+1=4.
故选:C.
14.解:当高在三角形内部时,顶角是60°;
当高在三角形外部时,顶角是120°.
故答案为:60°或120°.
15.解:在△ABD和△ACD中,
∴△ABD≌△ACD.
∴∠BAD=∠CAD.
又∵AB=AC,
∴BE=EC=3cm.
∴BC=6cm.
∵AB=AC,∠ABC=60°,
∴△ABC为等边三角形.
∴AB=6cm.
故答案为:6.
16.解:∵△ABC中,AB=AC
∴∠B=∠C
∵∠A=∠C
∴∠A=∠C=∠B=60°
故填60.
17.解:∵△ABC的等边三角形,
∴∠ACB=60°,
∴∠ACP+∠PCB=60°,
∵∠ACP=∠PBC,
∴∠PCB+∠PBC=60°,
∴∠BPC=180°﹣60°=120°.
故答案为120.
18.解:由已知条件a2+2b2+c2﹣2b(a+c)=0化简得,
(a﹣b)2+(b﹣c)2=0
∴a﹣b=0,b﹣c=0
即
a=b,b=c
∴a=b=c
故答案为等边三角形.
19.解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,
∴EF=2,
∵△ABC是等边三角形,
∴∠B=∠C=60°,
又∵DE∥AB,DF∥AC,
∴∠DEF=∠B=60°,∠DFE=∠C=60°,
∴△DEF是等边三角形,
∴剪下的△DEF的周长是2×3=6.
故答案为:6.
20.证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,
∴DE=DF,
在Rt△BDE和Rt△CDF中,
,
∴Rt△BDE≌Rt△CDF(HL),
∴∠B=∠C,
∴△ABC为等腰三角形.
21.证明:延长BE交AC于M
∵BE⊥AE,
∴∠AEB=∠AEM=90°
在△ABE中,
∵∠1+∠3+∠AEB=180°,
∴∠3=90°﹣∠1
同理,∠4=90°﹣∠2
∵∠1=∠2,
∴∠3=∠4,
∴AB=AM
∵BE⊥AE,
∴BM=2BE,
∴AC﹣AB=AC﹣AM=CM,
∵∠4是△BCM的外角
∴∠4=∠5+∠C
∵∠ABC=3∠C,∴∠ABC=∠3+∠5=∠4+∠5
∴3∠C=∠4+∠5=2∠5+∠C
∴∠5=∠C
∴CM=BM
∴AC﹣AB=BM=2BE
22.证明:∵∠A=120°,AB=AC,
∴∠B=∠C=30°,
又∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°,
∴∠BDE=∠CDF=60°,
∴∠EDF=60°,
∵D是BC的中点,
∴BD=CD,
在△BDE与△CDF中,
,
∴△BDE≌△CDF,
∴DE=DF,
∴△DEF是等边三角形.
23.证明:∵AD∥BC,
∴∠B=∠EAD,∠C=∠DAC,
∵AD平分外角∠EAC,
∴∠EAD=∠DAC,
∴∠B=∠C.
∴AB=AC.
24.证明:∵DE∥AC,
∴∠1=∠3,
∵AD平分∠BAC,
∴∠1=∠2,
∴∠2=∠3,
∵AD⊥BD,
∴∠2+∠B=90°,∠3+∠BDE=90°,
∴∠B=∠BDE,
∴BE=DE,
∴△BDE是等腰三角形.