中小学教育资源及组卷应用平台
北师大版义务教育教科书
数学
九年级上册
第四章
图形的相似
4.4探索三角形相似的条件(二)教学设计
一、学情分析
学生在七年级下册第三章《三角形》里,已学习过三角形的基础知识掌握了基本的概念;在本章前面几节课中,又学习了成比例线段,平行线分线段成比例,相似多边形,相似三角形,并理解了它们的概念;现已具有了初步的平面图形的知识本节课是要在上节课探索三角形相似的条件第一课时的学习基础上,作为本章节第二节课,进一步加深相似三角形部分的知识,继续探索“两边对应成比例且夹角相等的两个三角形相似”这个判定定理学生在上节课学习的基础上,已经具有一定的探索经验、分析问题能力及归纳演绎的能力,具备了一定的合作与交流的能力,因此在教学方法上建议采用学生自主探索、分组讨论总结的方式.
二、教学任务分析
教科书通过问题的形式,创设一个有利于学生动手操作和反思的情境,进一步发展学生的探索、交流能力,达到进一步探索三角形相似条件的目的,能够运用三角形相似的条件解决简单的问题,进一步发展学生的合情推理能力和初步的逻辑推理意识,由此体验数学概念由具体现象抽象出来的过程,以及数学术语表达的精练、简洁.
本节课学生经历发生、观察、操作、思考、交流、归纳的过程,进一步发展学生的空间观念,为后续章节的学习打下基础同时,让学生结合实际再次体会数学中的几何图形在生活中广泛存在并起到重要的作用;在教学中再辅以适量的练习使学生对所学的知识加深印象,增强解决问题的能力.
教学目标:
(一)知识目标:理解并掌握三角形相似的判定定理:“两边对应成比例且夹角相等的两个三角形相似”.
(二)能力目标:在进行探索的活动过程中,发展类比的数学思想,激发学生的探索发现归纳意识,增强合情推理的语言表达能力.
(三)情感态度与价值观目标:培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值.
教学重点:掌握相似三角形的判定定理:“两边对应成比例且夹角相等的两个三角形相似”.
教学难点:相似三角形判定定理在实际问题中的灵活运用.
学法指导:为了充分体现《数学新课程标准纲要》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程,在教学过程展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想方法教学中注意关注学生探究知识形成的过程,使学生充分体会数学研究的一般方法.
三、教学过程分析
第一环节:引入新课
1.相似三角形的相关概念
(1)三个角对应
、三条边对应
的两个三角形叫做相似三角形.
(2)相似三角形的对应角
,各对应边
.
(3)相似比等于
的两个三角形全等.
2.
我们已经有哪些判别两三角形相似的方法?
3.(1)两个三角形有两边成比例,它们一定相似吗?
(2)如果再增加一个条件,你能说出哪几种可能的情况?
(3)如果增加一角相等,你能说出哪些可能的情况?
(4)类比三角形全等的判定你认为可能还有哪些方法能判定两个三角形相似?(请大胆猜想)
目的:通过课前预习发现学生易出现的错误,巩固知识,为新课的学习做好铺垫,有利于帮助学生体会到新旧知识之间的联系与转化.
效果:课前布置,要求全班同学完成教师课前批阅,以利于课堂上有针对性的讲解.
当堂展示学生好的方法,研讨、改错.
第二环节:操作实践
画一画(同桌两人合作):
①甲同学作△ABC,使AB=4
cm,BC=6
cm;
②乙同学作△A'B'C',使∠B'=∠B,A'B'=2
cm,B'C'=3
cm.
想一想:
问题1:△A'B'C'与△ABC有何关系?你是如何得到的?
问题2:∠B=∠B',,对于任意一个给定的k,这两个三角形还会相似吗?
目的:给学生一个自主探究、获得新知的平台,增强学生的自信心;将学习空间还给学生,让学生在相互合作交流的过程中发现知识,掌握知识.
效果:学生们以自己的思维方式进行探究,充分经历从特殊到一般的过程.同时,讲解中小组之间互相补充、互相竞争,气氛热烈,同时培养了学生们的合作交流精神和语言表达能力.
第三环节:归纳总结
相似三角形判定定理2:
文字语言:
.
数学语言:
.
图形:
.
目的:让学生思考并总结几何图形、文字语言、符号语言,从而对三种语言的掌握更加游刃有余.
效果:学生能够类比判定定理1对判定定理2进行梳理,牢固掌握三种语言,较好的体现了数学素养.
第四环节:自主探索
想一想:如果△ABC与△A'B'C'两边成比例,且其中一边所对的角相等,那么这两个三角形定相似吗?类比三角形全等“边边角”的反例,你能举出反例吗?
结论:两边成比例,且其中一边所对的角相等,那么这两个三角形不一定相似.
目的:这是探索三角形方法的继续,让学生类比探究三角形全等的条件时画“边边角”反例的方式画图、比较、得出结论.
效果:学生基本都能对两个三角形是否相似做出正确的判断,对定理“两边成比例、夹角相等的两个三角形相似”有了更加深刻的理解.
第五环节:典例精析
例:如图,D,E分别是△ABC的边AC,AB上的点,AE=1.5,AC=2,BC=3,且,求DE的长.
目的:此题是“共角型”相似三角形的典型例题,旨在让学生观察认识图形,并充分体会从直观发现到自觉说理的过渡过程,渗透了简单逻辑推理的思想,为第五节的学习做好铺垫,从而达到承前启后的目的.
效果:基于上节课对例1的充分探究,此例题可以完全放手给学生,让其尝试利用所学新知解决简单的问题.
在此问题的解决过程中,可以采取小组内交流展示,班级展示等多种形式,对于条理不清楚以及书写不规范等问题,教师及时予以指出,为后续相似判定的严格证明打下基础.
第六环节:课堂演练
1.
如图,已知,AD=3,AC=6,BC=8,DE=
.
2.
已知△ABC如图所示,则图中与△ABC相似的是(
)
3.
能判定△ABC和△A'B'C'相似的条件是(
)
A.
B.
C.
D.
目的:通过对以上问题的解决,使学生经历由具体到抽象再到具体的探究过程.
此外,解决本节课引入时提出的问题有助于激发学生对数学证明的兴趣和掌握综合证法的信心,获得成功的体验,并增加论证的趣味性.
效果:基于上一环节的学习,学生已经具备独立解决问题的能力,因此完全可以让学生独立解决.
同时,可以采用小组间横向竞争的方式,激励学生积极思考分析问题,又快又好的解决问题
第七环节:拓展延伸
1.
如图,在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为
时,由点B、O、C组成的三角形与△AOB相似.
2.
如图,AB:AE=AD:AC,∠BAD=∠CAE,写出图中的相似三角形并加以证明.
目的:这两个题目,对分类讨论的数学思想方法进行渗透,对数学基本图形进行渗透是对学生能力的提升.
效果:基于上一环节的学习,学生已经对判定定理的掌握较为牢固,因此完全可以让学生独立思考,再小组交流从而提升能力.
第七环节:小结提升
1.
通过这节课的学习,你有哪些收获?
2.
你还有哪些困惑?
目的:学生畅所欲言自己的实际收获,达到了本节课的教学目标.
效果:鼓励学生结合本节课的学习,谈自己的收获与感想.
第八环节:布置作业
习题4.5:必做:1,2,3
选做:4
目的:通过分层设置作业,让不同的学生在数学中得到不同的发展.
效果:基于本节课的学习,学生已经对判定定理2的掌握较为牢固,多数学生能够较好的完成作业,对本节课的知识进行巩固.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)