2021-2022学年粤教版(2019)选择性必修第二册
2.2法拉第电磁感应定律
同步练习(解析版)
1.如图所示,一个水平放置的矩形线圈,在细长水平条形磁铁的极附近竖直下落,由位置A经位置到位置。磁铁中心平面与位置在同一水平面,位置A和都很靠近,则在A至的下落过程中( )
A.磁铁对水平面的压力小于磁铁的重力
B.位置处矩形线圈中的总磁通量为零
C.位置处矩形线圈中的感应电流为零
D.线圈中的感应电流方向始终为
2.如图所示,磁感应强度为B的匀强磁场中,一长度为l的均匀直导体棒绕其中点O,以角速度在垂直磁场的平面内匀速转动,导体棒a、b两端点间的电势差为( )
A.
B.
C.
D.
3.关于感应电动势的大小,下列说法正确的是( )
A.穿过闭合电路的磁通量为零时,其感应电动势一定最大
B.穿过闭合电路的磁通量为零时,其感应电动势一定为零
C.穿过闭合电路的磁通量变化量越大,其感应电动势一定越大
D.穿过闭合电路的磁通量变化率越大,其感应电动势一定越大
4.如图所示,固定于绝缘水平面上的金属架处在竖直向下的匀强磁场中,金属棒沿金属架以速度v向右匀速运动。时,磁感应强度为,此时,到达的位置恰好使构成一个边长为L的正方形。为使棒中不产生感应电流,从开始,磁感应强度B随时间t变化的关系式正确的是( )
A.
B.
C.
D.
5.电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理如图所示,图中直流电源电动势为,内阻为;两根固定于水平面内的光滑平行金属导轨间距为,电阻不计;导轨间存在磁感应强度大小为、方向与导轨平面垂直的匀强磁场(图中未画出)。炮弹可视为一质量为、电阻为的金属棒(图中未画出),重直放在两导轨间处于静止状态。并与导轨接触良好。闭合开关,开始向右加速运动,获得最大速度后,离开导轨。下列说法正确的是( )。
A.在导轨上速度最大时,通过中的电流最大
B.在导轨上速度最大时,棒所受安培力最大
C.获得的最大加速度
D.获得的最大速度为
6.如图所示,有一竖直向下的匀强磁场,磁感应强度B=0.1T。将一水平放置的金属棒ab以的水平速度抛出,金属棒在运动过程中始终保持水平,金属棒的长度为L=0.5m。不计空气阻力,重力加速度g=10m/s2,则( )
A.下落过程中金属棒a端的电势高于b端的电势
B.下落过程中金属棒产生的感应电动势越来越大
C.洛伦兹力对金属棒内的自由电子做正功
D.运动0.5s时,金属棒产生的感应电动势大小为0.25V
7.如图所示,在足够大的磁感应强度大小为B、方向垂直纸面向里的匀强磁场中,有一根长度为L的导体棒AC。第一次以垂直棒的速度v在纸面内匀速拉动导体棒;第二次以A点为轴在纸面内顺时针转动导体棒,若这两种情况下导体棒产生的感应电动势相同,则第二次转动的角速度为( )
A.
B.
C.
D.
8.如图所示,将一根绝缘硬金属导线弯曲成一个完整的正弦曲线形状,电阻为R,它通过两个小金属环与电阻不计的长直金属杆导通,图中a、b间距离为L,导线组成的正弦图形顶部或底部到杆的距离都是d,已知该金属导线与ab段金属杆围成的面积为,右边虚线范围内存在磁感应强度大小为B、方向垂直于弯曲导线所在平面向里的匀强磁场,磁场区域的宽度为,现在外力作用下导线沿杆以恒定的速度v向右运动,t=0时刻a环刚从O点进入磁场区域,则下列说法正确的是( )
A.t=时刻,回路中的感应电动势为Bdv
B.t=时刻,回路中的感应电流第一次开始改变方向
C.t=时刻,回路中的感应电动势为2Bdv
D.t=时刻,回路中的感应电流第一次开始改变方向
9.如图,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上。当金属框绕ab边以角速度ω逆时针转动时,a、b、c三点的电势分别为Ua、Ub、Uc。已知bc边的长度为l。下列判断正确的是( )
A.Ua>Uc,金属框中无电流
B.Ub>Uc,金属框中电流方向沿a-b-c-a
C.Ubc=-Bl2ω,金属框中无电流
D.Uac=Bl2ω,金属框中电流方向沿a-c-b-a
10.如图所示,CDEF是金属框,框内存在着垂直纸面向里的匀强磁场。当导体AB向右移动时,金属框中CD、EF边的感应电流的方向为( )
A.C→D,E→F
B.D→C,E→F
C.C→D,F→E
D.D→C,F→E
11.如图所示,在庆祝反法西斯胜利70周年阅兵盛典上,我国预警机“空警-2
000”在通过天安门上空时机翼保持水平,以4.5×102
km/h的速度自东向西飞行.该机的翼展(两翼尖之间的距离)为50
m,北京地区地磁场的竖直分量向下,大小为4.7×10-5
T,则( )
A.两翼尖之间的电势差为2.9
V
B.两翼尖之间的电势差为1.1
V
C.飞机左方翼尖的电势比右方翼尖的电势高
D.飞机左方翼尖的电势比右方翼尖的电势低
12.如图甲所示,固定导线MN和固定矩形线框abcd共面。MN通以图乙所示的电流,电流沿NM方向,T时间后达到稳定,下列说法正确的是( )
A.0~T时间线框感应电流方向沿adcba
B.0~T时间线框感应电流逐渐增大
C.0~T时间ab边始终不受安培力的作用
D.T时间后线框感应电流恒定
13.如图所示,半圆形金属线圈绕垂直其圆心O的轴,在纸面内逆时针匀速旋转。初始时刻,线圈位于水平虚线下方,且直径与虚线重合,虚线上方区域有垂直纸面向里的匀强磁场,则下列有关线圈中感应电流I与时间t的关系图象、半径边所受安培力F与时间t的关系图象,正确的是( )
A.
B.
C.
D.
14.如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动。现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速。在圆盘减速过程中,以下说法正确的是( )
A.处于磁场中的圆盘部分,靠近圆心处电势高
B.所加磁场越强越易使圆盘停止转动
C.若所加磁场反向,圆盘将加速转动
D.若所加磁场穿过整个圆盘,圆盘将匀速转动
15.如图甲所示是一种振动发电装置的示意图,半径为r=0.1
m、匝数n=20的线圈位于辐向分布的磁场中,磁场的磁感线均沿半径方向均匀分布(其右视图如图乙所示),线圈所在位置的磁感应强度的大小均为,线圈电阻为R1=0.5
Ω,它的引出线接有R2=9.5
Ω的小电珠L,外力推动线圈框架的P端,使线圈沿轴线做往复运动,线圈运动速度v随时间t变化的规律如图丙所示(摩擦等损耗不计,图丙为正弦函数图线),则( )
A.小电珠中电流的峰值为0.16
A
B.小电珠中电流的有效值为0.16
A
C.电压表的示数约为1.5
V
D.t=0.01
s时外力的大小为0.128
N
16.如图所示,单匝矩形线圈绕bc边的中点从中性面开始转动,角速度为ω。经过时间t,线圈转过的角度是ωt,ab
边的线速度v的方向跟磁感线方向间的夹角也等于ωt。设ab边长为,bc
边长为,线圈电阻为R,磁感应强度为B,则:
(1)ab边产生的感应电动势为多大?
(2)整个线圈中的感应电动势为多大?
(3)当线圈转过的角度为
30°时,ab边所受安培力大小?
17.设图中的磁感应强度B=1T,平行导轨宽l=1m,金属棒PQ以1m/s速度贴着导轨向右运动,R=1Ω,其他电阻不计。
(1)运动的金属棒会产生感应电动势,相当于电源。用电池等符号画出这个装置的等效电路图;
(2)通过R的电流方向如何?大小等于多少?
18.图甲是法拉第发明的铜盘发电机,也是人类历史上第一台发电机。图乙是利用这种发电机给平行金属板电容器供电的示意图。已知铜盘的半径为R,加在盘下侧的匀强磁场磁感应强度为B1,盘匀速转动的角速度为ω,每块平行板长度为d,板间距离也为d,板间加垂直纸面向内、磁感应强度为B2(大小未知)的匀强磁场。已知重力加速度为g。
(1)求电容器两极板间的电压U;
(2)若有一带负电的小球以速度v0从电容器两板中间水平向右射入,并在复合场中做匀速圆周运动又恰好从极板右侧射出,求小球的电量与质量之比及磁感应强度B2的大小。
19.如图所示,
形光滑导轨水平放置,左侧接有阻值为R=2Ω的电阻,其余部分电阻不计。在虚线右侧空间中存在竖直向下的磁场,磁感应强度B=0.5T。左侧导轨宽L=1.6m,右侧导轨与虚线夹角53?,一质量为0.2kg,电阻不计的金属棒与导轨始终接触良好,t=0时刻金属棒以v0=1m/s初速度从I位置进入磁场,向右移动0.8m到达位置II。由于金属棒受到水平外力的作用,使得通过R的电流保持恒定。已知,。求:
(1)金属棒到达位置II时的速度大小;
(2)水平外力对金属棒做的功。
20.如图甲所示的螺线管,线圈匝数n=2000,横截面积为S=10cm2,电阻r=1Ω,与螺线管串联的外电阻R1=4Ω,R2=3Ω,向右穿过螺线管的匀强磁场的磁感应强度按图乙所示规律变化。求:
(1)螺线管产生的感应电动势大小;
(2)电路中电流的大小;
(3)螺线管两端的电压大小,并说明M、P两点哪点相当于电源正极。
参考答案
1.D
【详解】
A.根据楞次定律“来拒去留”的规律结合牛顿第三定律,可知从A到C磁铁对水平面的压力大于磁铁的重力,故A错误;
B.位置处矩形线圈中的总磁通量为最小,但并不为零,故B错误;
C.位置处矩形线圈中的磁通量变化率不为零,根据法拉第电磁感应知,感应电流不为零,故C错误;
D.细长磁铁附近是非匀强磁场,由条形磁铁的磁场可知,线圈在位置B时穿过矩形闭合线圈的磁通量最少,线圈从位置A到位置B,从下向上穿过abcd的磁通量在减少,线圈从位置B到位置C,从上向下穿过abcd的磁通量在增加,根据楞次定律和右手螺旋定则可判知感应电流的方向始终为,故D正确。
故选D。
2.B
【详解】
均匀直导体棒绕其中点O,以角速度在垂直磁场的平面内匀速转动,可判断a、O间电势差与b、O间电势差相等,则a、b间电势差为0。
故选B。
3.D
【详解】
AB.根据法拉第电磁感应定律,感应电动势与磁通量无关,所以穿过闭合电路的磁通量为零时,其感应电动势不一定最大,也不一定为零,AB错误;
C.根据法拉第电磁感应定律,感应电动势与磁通量的变化量无关,所以穿过闭合电路的磁通量变化量越大,其感应电动势不一定越大,C错误;
D.根据法拉第电磁感应定律,穿过闭合电路的磁通量变化率越大,其感应电动势一定越大,D正确。
故选D。
4.A
【详解】
为使MN棒中不产生感应电流,则要使得穿过闭合回路的磁通量不变,即
解得
故选A。
5.D
【详解】
AB.在轨道上速度最大时,加速度为零,安培力也为零,故通过的电流也为零,AB错误;
C.最大加速度在初始时刻取得,故
C错误;
D.当切割磁感线产生的动生电动势在回路当中与电源电动势等大反向时,即
时,回路中产生的电流为零,安培力为零,加速度为零,速度取最大值,为
D正确。
故选D。
6.D
【详解】
A.由左手定则可知,电子在洛伦兹力的作用下向a端移动,可得下落过程中金属棒a端的电势低于b端的电势,故A错误;
BD.金属棒在运动过程中产生的感应电动势为
水平方向做匀速直线运动,所以感应电动势不变,故D正确,B错误;
C.总的洛伦兹力是不对电子做功的,它只是一个分量对电子做正功,另一个分量却是阻碍导体运动的,作负功,这两个分量所做的功的代数和等于零,因此洛伦兹力的作用并不提供能量,而只是传递能量,故C错误。
故选D。
7.A
【详解】
第一次以垂直棒的速度v匀速拉动导体棒,产生的感应电动势为
E1=BLv
第二次以A点为轴顺时针转动导体棒,角速度为ω,则末端的线速度为
v′=Lω
感应电动势为
因为
E1=E2
解得
故A正确;BCD错误;
故选A。
8.B
【详解】
ABD.导线切割磁感线产生的感应电动势
其中l指的是有效切割长度,当
时,导线的有效切割长度为零,所以感应电动势为0,此时电流的方向第一次发生改变,故B正确,A、D错误;
C.当
时,电路中的有效切割长度
所以感应电动势
故C错误。
故选B。
9.C
【详解】
ABD在三角形金属框内,有两边切割磁感线,其一为bc边,根据
可得:电动势大小为;其二为ac边,ac边有效的切割长度为l,根据
可得:电动势大小也为;由右手定则可知:金属框内无电流,且
Uc>Ub=Ua
故C正确,A、B、D错误。
故选C。
10.C
【详解】
根据右手定则可以判断,AB中感应电流的方向为A→B,则在ABCD回路中,CD的感应电流方向为C→D,在ABFE回路中,EF的感应电流方向为F→E,C正确。
故选C.
11.C
【详解】
AB.飞机的飞行速度为4.5×102
km/h=125
m/s,飞机两翼尖之间的电动势为
E=Blv=4.7×10-5×50×125
V≈0.29
V
A、B项错误;
CD.飞机从东向西飞行,磁场竖直向下,根据右手定则可知,飞机左方翼尖的电势高于右方翼尖的电势,C项正确,D项错误.
故选C。
12.A
【详解】
A.0~T时间内,导线MN中的电流向上增大,根据右手定则可知穿过线框中的磁通量垂直纸面向里也增大,从而在线框中产生感应电流。根据楞次定律,可判断得线框中感应电流方向沿adcba,故A正确;
B.0~T时间内,导线MN中的电流向上增大,但电流的变化率却减小,所以穿过线框中的磁通量的变化率减小,根据法拉第电磁感应定律可知,感应电流逐渐减小,故B错误;
C.0~T时间内,由于ab边始终有感应电流且磁场垂直ab边不为零,故一直受到安培力的作用,故C错误;
D.T时间后,由于导线MN中的电流恒定,所以产生的磁场也恒定,使得穿过线框的磁通量保持不变,磁通量的变化率为零,所以线框中感应电流为零,故D错误。
故选A。
13.AD
【详解】
AB.根据
由题知,半圆形金属线圈中电流大小不变,方向发生周期性变化,选项A正确,选项B错误;
CD.根据
F=BIr
可知,半径边在磁场中所受安培力大小恒定,离开磁场后不受安培力,选项D正确,选项C错误。
故选AD。
14.ABD
【详解】
A.把圆盘看成沿半径方向紧密排列的“辐条”,由右手定则知,靠近圆心处电势高,A正确;
B.所加磁场越强,感应电流越强,安培力越大,对圆盘转动的阻碍越大,B正确;
C.如果磁场反向,由楞次定律可知,安培力仍阻碍圆盘转动,C错误;
D.若将整个圆盘置于磁场中,则圆盘中无感应电流,圆盘将匀速转动,D正确。
故选ABD。
15.AD
【详解】
AB.由题意及法拉第电磁感应定律可知,线圈在磁场中做往复运动,产生的感应电动势随时间按正弦规律变化,线圈中的感应电动势的峰值为
Em=nB·2πrvm
故小电珠中电流的峰值为
Im==A=0.16
A
有效值为
I==0.08A
A正确,B错误;
C.根据电路图,可知电压表示数为
C错误;
D.当时,由图丙知线圈的加速度为0,则此时外力大小等于线圈所受安培力大小,所以此时外力的大小为
F=nB·2πrIm=0.128
N
D正确。
故选AD。
16.(1);(2);(3)
【详解】
(1)由感应电动势公式得
(2)整个线圈中的感应电动势等于和两边产生的感应电动势组之和,且
所以
(3)当线圈转过的角度为时,线圈中的电流
边所受安培力大小
17.(1);(2)竖直向下,1A
【详解】
(1)PQ切割磁感线,相当于电源,等效电路如图所示
(2)由法拉第电磁感应定律有
E=Blv=1V
根据欧姆定律有
由右手定则判断通过R的电流方向竖直向下。
18.(1);(2),
【详解】
(1)感应电动势
电容器两极板间的电压
(2)对粒子:复合场中竖直方向平衡
Eq=mg
对粒子:合力即为洛仑兹力
带电小球恰能从右板边缘射出,由几何关系可得:
解得
19.(1)
4m/s;(2)
1.66J
【详解】
(1)初始时刻感应电动势
当金属棒向右运动x时,设金属棒的速度为v。由几何关系可知此时的有效切割长度为
电动势
依题意
联立并代入数据,解得
(2)金属棒向右运动过程中,通过R的电量为
其中
对金属棒由动能定理
根据能量关系
联立并代入数据,解得
20.(1)4V;(2)0.5A;(3)3.5V,M点
【详解】
(1)由题图乙可知B随t的变化率为
根据法拉第电磁感应定律可得螺线管产生的感应电动势大小为
(2)根据闭合电路欧姆定律可知电路中的电流大小为
(3)螺线管两端的电压大小为
根据楞次定律可知电流从M点流出螺线管,所以M点相当于电源正极。