2021年苏科版九年级数学上册《1.4用一元二次方程解决问题》优生专题提升训练(附答案)
1.益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350﹣10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件商品?每件应定价多少?
2.某地为引导旅客来旅游及消费,计划5月至9月开展全城推广活动.某旅行社为吸引市民组团去旅游,推出了如下收费标准:如果人数不超过25人,人均旅游费用为2000元;如果超过25人,每增加1人,人均旅游费用降低40元,但人均旅游费用不得低于1700元.某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?
3.某商店从厂家以每件21元的价格购进一批商品.若每件商品的售价为x元,则可卖出(350﹣10x)件,但物价局限定每件商品的售价不能超过进价的120%.若该商店计划从这批商品中获取400元利润(不计其他成本),问需要卖出多少件商品,此时的售价是多少?
4.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.
(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?
(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.
5.某中心城市有一楼盘,开发商准备以每平方米8000元的价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价后,决定以每平方米6480元的价格销售.
(1)求平均每次下调的百分率;
(2)房产销售经理向开发商建议:先下调5%,再下调15%,这样更有吸引力.请问房产销售经理的方案对购房者是否更优惠?为什么?
6.某大型水果超市销售无锡水蜜桃,根据前段时间的销售经验,每天的售价x(元/箱)与销售量y(箱)有如表关系:
每箱售价x(元)
68
67
66
65
…
40
每天销量y(箱)
40
45
50
55
…
180
已知y与x之间的函数关系是一次函数.
(1)求y与x的函数解析式;
(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?
(3)七月份连续阴雨,销售量减少,超市决定采取降价销售,所以从7月17号开始水蜜桃销售价格在(2)的条件下,下降了m%,同时水蜜桃的进货成本下降了10%,销售量也因此比原来每天获得1600元盈利时上涨了2m%(m<100),7月份(按31天计算)降价销售后的水蜜桃销售总盈利比7月份降价销售前的销售总盈利少7120元,求m的值.
7.水蜜桃是人们非常喜爱的水果之一,每年七、八月份我市水蜜桃大量上市,今年某水果商以16.5元/千克的价格购进一批水蜜桃进行销售,运输过程中质量损耗5%,运输费用是0.6元/千克,假设不计其他费用.
(1)水果商要把水蜜桃售价至少定为多少才不会亏本?
(2)在销售过程中,根据市场调查与预测,水果商发现每天水蜜桃的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润是220元?
8.已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?
(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.
9.如图,在矩形ABCD中,AB=10cm,AD=8cm,点P从点A出发沿AB以2cm/s的速度向点终点B运动,同时点Q从点B出发沿BC以1cm/s的速度向点终点C运动,它们到达终点后停止运动.
(1)几秒后,点P、D的距离是点P、Q的距离的2倍;
(2)几秒后,△DPQ的面积是24cm2.
10.如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.
(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?
(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?
11.如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m.
(1)鸡场的面积能达到150m2吗?
(2)鸡场的面积能达到180m2吗?
如果能,请你给出设计方案;如果不能,请说明理由.
12.某大学生利用暑假社会实践参与了一家网店经营,该网店以每个20元的价格购进900个某新型商品.第一周以每个35元的价格售出300个,第二周若按每个35元的价格销售仍可售出300个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个).
(1)若第二周降低价格1元售出,则第一周,第二周分别获利多少元?
(2)若第二周单价降低x元销售一周后,商店对剩余商品清仓处理,以每个15元的价格全部售出,如果这批商品计划获利9500元,问第二周每个商品的单价应降低多少元?
13.某快餐店试销某种套餐,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).试销一段时间后发现,若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店每天的利润.
(1)若每份套餐售价不超过10元.
①试写出y与x的函数关系式;
②若要使该店每天的利润不少于800元,则每份套餐的售价应为多少元?
(2)该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若不能,请说明理由;若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?
14.资料:公司营销区域面积是指公司营销活动范围内的地方面积,公共营销区域面积是指两家及以上公司营销活动重叠范围内的地方面积.
材料:某地有A,B两家商贸公司(以下简称A,B公司).去年下半年A,B公司营销区域面积分别为m平方千米,n平方千米,其中m=3n,公共营销区域面积与A公司营销区域面积的比为;今年上半年,受政策鼓励,各公司决策调整,A公司营销区域面积比去年下半年增长了x%,B公司营销区域面积比去年下半年增长的百分数是A公司的4倍,公共营销区域面积与A公司营销区域面积的比为,同时公共营销区域面积与A,B两公司总营销区域面积的比比去年下半年增加了x个百分点.
问题:
(1)根据上述材料,针对去年下半年,提出一个你喜欢的数学问题(如求去年下半年公共营销区域面积与B公司营销区域面积的比),并解答;
(2)若同一个公司去年下半年和今年上半年每平方千米产生的经济收益持平,且A公司每半年每平方千米产生的经济收益均为B公司的1.5倍,求去年下半年与今年上半年两公司总经济收益之比.
15.如图,在矩形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发,沿AD、BC、CB、DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止、已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm,
(1)当x为何值时,点P、N重合;
(2)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形.
16.某工厂生产的某种产品按质量分为10个档次,第一档次(最低档次)的产品一天可生产80件,每件产品的利润为10元,每提高一个档次,每件产品的利润增加2元.
(1)当每件产品的利润为16元时,此产品质量在第几档次?
(2)由于生产工序不同,此产品每提高一个档次,一天的产量减少4件.若生产某档次产品一天的总利润为1200元,问该工厂生产的是第几档次的产品?
17.今年圣诞节前夕,小明、小丽两位同学到某超市调研一种袜子的销售情况,这种袜子的进价为每双1元,请根据小丽提供的信息解决小明提出的问题.
小丽:每双定价2元,每天能卖出500双,而且这种袜子的售价每上涨0.1元,其每天的销售量将减少10双.
小明:照你所说,如果要实现每天800元的销售利润,那该如何定价?别忘了,物价局有规定,售价不能超过进价的300%呦.
18.为了让学生亲身感受常州城市的变化,正衡中学天宁分校组织九年级某班学生进行“太湖一日研学”活动.某旅行社推出了如下收费标准:
(1)如果人数不超过30人,人均旅游费用为100元;
(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.
该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?
19.阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想﹣﹣转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.
(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=
,x3=
;
(2)拓展:用“转化”思想求方程=x的解;
(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.
20.水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天售出100千克.通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出20千克,为了保证每天至少售出240千克,张阿姨决定降价销售.
(1)若售价降低0.8元,则每天的销售量为
千克、销售利润为
元;
(2)若将这种水果每千克降价x元,则每天的销售量是
千克(用含x的代数式表示);
(3)销售这种水果要想每天盈利300元,张阿姨应将每千克的销售价降至多少元?
21.某日孙老师佩戴运动手环进行快走锻炼,两次锻炼后数据如表.与第一次锻炼相比,孙老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍.根据经验已知孙老师第二次锻炼时平均步长减少的百分率小于0.5.
项目
第一次锻炼
第二次锻炼
步数(步)
10000
①
平均步长(米/步)
0.6
②
距离(米)
6000
7020
注:步数×平均步长=距离.
(1)求孙老师第二次锻炼时平均步长减少的百分率;
(2)孙老师发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求孙老师这500米的平均步长.
参考答案
1.解:依题意(a﹣21)(350﹣10a)=400,
整理得a2﹣56a+775=0,解得a1=25,a2=31.
因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.
所以350﹣10a=350﹣10×25=100(件).
答:需要进货100件,每件商品应定价25元.
2.解:∵2000×25=50000<54000,
∴去的人一定超过25人,
设该单位这次共有x个员工去旅游,
根据题意,得[2000﹣40(x﹣25)]x=54000,
解之得:x1=45,x2=30,
当x=45时,人均费用为1200元.因为低于1700元,这种情况舍去.
当x=30时,人均费用为1800元.符合题意.
答:该单位这次共有30员工去旅游.
3.解:根据题意,得
(x﹣21)(350﹣10x)=400
整理,得x2﹣56x+775=0
解得x1=25,x2=31
因为21×120%=25.2,即售价不能超过25.2元,所以x=31不合题意,应舍去.
故x=25,从而卖出350﹣10×25=100件,
答:需要卖出100件商品,每件售价是25元.
4.解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,
根据题意得:x≥4(50﹣x),
解得:x≥40.
答:原计划今年1至5月,道路硬化的里程数至少是40千米.
(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x千米、x千米,
2x+x=45,
x=15,
2x=30,
设每千米的道路硬化和道路拓宽的经费分别为y万元、2y万元,
30y+15×2y=780,
y=13,
2y=26,
2018年1至5月:道路硬化的里程为40千米,道路拓宽的里程为10千米,
由题意得:13(1+a%)?40(1+5a%)+26(1+5a%)?10(1+8a%)=780(1+10a%),
设a%=m,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),
10m2﹣m=0,
m1=,m2=0(舍),
∴a=10.
5.解:(1)设平均每次下调的百分率是x,根据题意列方程得,
8000(1﹣x)2=6480,
解得:x1=10%,x2=190%(不合题意,舍去);
答:平均每次下调的百分率为10%.
(2)∵先下调5%,再下调15%,这样最后的单价是:
8000×(1﹣5%)×(1﹣15%)=6392<6480元,
∴房产销售经理的方案对购房者更优惠.
6.解:(1)设y与x之间的函数关系是:y=kx+b,
根据题意可得:,
解得:,
故y与x之间的函数关系是:y=﹣5x+380;
(2)由题意可得:(x﹣40)(﹣5x+380)=1600,
解得:x1=56,x2=60,
顾客要得到实惠,售价低,所以x=60舍去,所以x=56,
答:要使顾客获得实惠,每箱售价是56元;
(3)在(2)的条件下,x=56时,y=100,由题意得到方程:
1600×16=[56×(1﹣m%)﹣40×(1﹣10%)]×100×(1+2m%)×15+7120,
解得:m1=20,m2=﹣(舍去),
答:m的值为20.
7.解:(1)设购进水蜜桃a千克,水蜜桃定价每千克x元水果商才不亏本.
xa(1﹣5%)≥x(16.5+0.6)x≥18
答:至少每千克18元;
(2)由(1)可知,每千克水蜜桃的平均成本为18元,
求出y与销售单价x之间的函数关系为y=﹣5x+210,
由题意得:y=﹣5x+210,
(x﹣18)(﹣5x+210)=220
X1=20,x2=40
答:当销售单价定为20元或40元时,每天获得的利润是220元.
8.解:(1)设
经过x秒以后△PBQ面积为6cm2,则
×(5﹣x)×2x=6,
整理得:x2﹣5x+6=0,
解得:x=2或x=3.
答:2或3秒后△PBQ的面积等于6cm2
.
(2)设经过x秒以后△PBQ面积为8cm2,则
×(5﹣x)×2x=8,
整理得:x2﹣5x+8=0,
△=25﹣32=﹣7<0,
所以,此方程无解,
故△PQB的面积不能等于8cm2.
9.解:(1)设t秒后点P、D的距离是点P、Q距离的2倍,
∴PD=2PQ,
∵四边形ABCD是矩形,
∴∠A=∠B=90°,
∴PD2=AP2+AD2,PQ2=BP2+BQ2,
∵PD2=4
PQ2,
∴82+(2t)2=4[(10﹣2t)2+t2],
解得:t1=3,t2=7;
∵t=7时10﹣2t<0,
∴t=3,
答:3秒后,点P、D的距离是点P、Q的距离的2倍;
(2)设x秒后△DPQ的面积是24cm2,
则×8×2x+(10﹣2x)?x+(8﹣x)×10=80﹣24,
整理得x2﹣8x+16=0
解得x1=x2=4,
答:4秒后,△DPQ的面积是24cm2.
10.解:(1)过点P作PE⊥CD于E.则根据题意,得
设x秒后,点P和点Q的距离是10cm.
(16﹣2x﹣3x)2+62=102,即(16﹣5x)2=64,
∴16﹣5x=±8,
∴x1=,x2=;
∴经过s或sP、Q两点之间的距离是10cm;
(2)连接BQ.设经过ys后△PBQ的面积为12cm2.
①当0≤y≤时,则PB=16﹣3y,
∴PB?BC=12,即×(16﹣3y)×6=12,
解得y=4;
②当<x≤时,
BP=3y﹣AB=3y﹣16,QC=2y,则
BP?CQ=(3y﹣16)×2y=12,
解得y1=6,y2=﹣(舍去);
③<x≤8时,
QP=CQ﹣PQ=22﹣y,则
QP?CB=(22﹣y)×6=12,
解得y=18(舍去).
综上所述,经过4秒或6秒△PBQ的面积为
12cm2.
11.解:设垂直于墙的边长为xm.
(1)x(35﹣2x)=150,
解得x1=10,x2=7.5.
当x=7.5时,35﹣2x=20>18,不合题意,舍去.
当x=10时,35﹣2x=15.
∴x=10.
答:垂直于墙的边长为10m,平行于墙的边长为15米时,鸡场的面积为150m2;
(2)x(35﹣2x)=180,
2x2﹣35x+180=0.
∵△<0,
∴此方程无解.
答:鸡场的面积不能达到180m2.
12.解:(1)第一周获利:300×(35﹣20)=4500(元);
第二周获利:(300+50)×(35﹣1﹣20)=4900(元);
故第一周获利4500元,第二周获利4900元.
(2)根据题意,得:4500+(15﹣x)(300+50x)﹣5(900﹣300﹣300﹣50x)=9500,
即:x2﹣14x+40=0,
解得:x1=4,x2=10,
当x=10时,300+50x=300+500=800,300+800=1100>900(不合题意舍去).
答:第二周每个商品的销售价格应降价4元.
13.解:(1)①y=400x﹣2600.(5<x≤10).
②依题意得:400x﹣2600≥800,解得:x≥8.5,
又∵5<x≤10,
∴8.5≤x≤10.
∵且每份套餐的售价x(元)取整数,
∴每份套餐的售价应为9元或10元.
(2)能,理由:
依题意可知:每份套餐售价提高到10元以上时,
y=(x﹣5)[400﹣40(x﹣10)]﹣600,
当y=1560时,
(x﹣5)[400﹣40(x﹣10)]﹣600=1560,
解得:x1=11,x2=14,
为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.
故该套餐售价应定为11元.
14.解:(1)问题:求去年下半年公共营销区域面积与B公司营销区域面积的比?
3n×=n,
n:n=;
(2)依题意有×3n(1+x%)=[3n(1+x%)+n(1+4x%)﹣×3n(1+x%)][3n×÷(3n+n﹣n)+x%],
100(x%)2+45x%﹣13=0,
解得x%=20%,x%=﹣65%(舍去),
设B公司每半年每平方千米产生的经济收益为a,则A公司每半年每平方千米产生的经济收益为1.5a,
今年上半年两公司总经济收益为1.5a×3n×(1+20%)+an×(1+4×20%)=7.2na,
去年下半年两公司总经济收益为1.5a×3n+an=5.5na,
故去年下半年与今年上半年两公司总经济收益之比为(5.5na):(7.2na)=55:72.
故去年下半年与今年上半年两公司总经济收益之比为55:72.
15.解:(1)∵P,N重合,
∴2x+x2=20,
∴,(舍去),
∴当时,P,N重合;
(2)因为当N点到达A点时,x=2,此时M点和Q点还未相遇,
所以点Q只能在点M的左侧,
①当点P在点N的左侧时,依题意得
20﹣(x+3x)=20﹣(2x+x2),
解得x1=0(舍去),x2=2,
当x=2时四边形PQMN是平行四边形;
②当点P在点N的右侧时,依题意得
20﹣(x+3x)=(2x+x2)﹣20,
解得x1=﹣10(舍去),x2=4,
当x=4时四边形NQMP是平行四边形,
所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.
16.解:(1)当每件利润是16元时,提高了(16﹣10)÷2=3个档次,
∵提高3个档次,
∴此产品的质量档次是第4档次.
(2)设生产产品的质量档次是在第x档次时,一天的利润是y,
由题意可得y=[10+2(x﹣1)][80﹣4(x﹣1)],
整理得y=﹣8x2+136x+672,
当利润是1200元时,即﹣8x2+136x+672=1200,
解得:x1=6,x2=11(11>10,不符合题意,舍去),
答:当生产产品的质量档次是在第6档次时,一天的总利润为1200元.
17.解:设每双袜子的定价为x元时,每天的利润为800元.
根据题意,得(x﹣1)(500﹣10×)=800,
解得x1=3,x2=5.
∵售价不能超过进价的300%,
∴x≤1×300%.即x≤3.
∴x=3.
答:每双袜子的定价为3元时,每天的利润为800元.
18.解:∵100×30=3000<3150,
∴该班参加研学游活动的学生数超过30人.
设共有x名同学参加了研学游活动,由题意得:
x[100﹣2(x﹣30)]=3150,
解得x1=35,x2=45,
当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意;
当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.
答:共有35名同学参加了研学游活动.
19.解:(1)x3+x2﹣2x=0,
x(x2+x﹣2)=0,
x(x+2)(x﹣1)=0
所以x=0或x+2=0或x﹣1=0
∴x1=0,x2=﹣2,x3=1;
故答案为:﹣2,1;
(2)=x,
方程的两边平方,得2x+3=x2
即x2﹣2x﹣3=0
(x﹣3)(x+1)=0
∴x﹣3=0或x+1=0
∴x1=3,x2=﹣1,
当x=﹣1时,==1≠﹣1,
所以﹣1不是原方程的解.
所以方程=x的解是x=3;
(3)因为四边形ABCD是矩形,
所以∠A=∠D=90°,AB=CD=3m
设AP=xm,则PD=(8﹣x)m
因为BP+CP=10,
BP=,CP=
∴+=10
∴=10﹣
两边平方,得(8﹣x)2+9=100﹣20+9+x2
整理,得5=4x+9
两边平方并整理,得x2﹣8x+16=0
即(x﹣4)2=0
所以x=4.
经检验,x=4是方程的解.
答:AP的长为4m.
20.解:(1)销售量:100+20×=100+160=260,
利润:(100+160)(6﹣4﹣0.8)=312,
则每天的销售量为260千克、销售利润为312元;
故答案为:260,312;
(2)将这种水果每千克降低x元,则每天的销售量是100+×20=100+200x(千克);
故答案为:(100+200x);
(3)设这种水果每千克降价x元,
根据题意得:(6﹣4﹣x)(100+200x)=300,
2x2﹣3x+1=0,
解得:x=0.5或x=1,
当x=0.5时,销售量是100+200×0.5=200<240;
当x=1时,销售量是100+200=300>240.
∵每天至少售出240千克,
∴x=1.
6﹣1=5,
答:张阿姨应将每千克的销售价降至5元.
21.解:(1)①根据题意可得:10000(1+3x);
②第二次锻炼的平均步长(米/步)为:0.6(1﹣x);
故答案为:10000(1+3x);0.6(1﹣x);
设孙老师第二次锻炼时平均步长减少的百分率为x,
由题意:10000(1+3x)×0.6(1﹣x)=7020
解得:x1=>0.5(舍去),x2=0.1.
∴x=10%
答:孙老师第二次锻炼时平均步长减少的百分率为10%;
(2)解:10000+10000(1+0.1×3)=23000,
500÷(24000﹣23000)=0.5,
答:孙老师这500米的平均步幅为0.5米.