向量的数乘与向量共线的关系
1.下列说法中正确的个数是( )
①λa与a的方向不是相同就是相反
②当且仅当a与b共线时,a与a+b共线
③若|b|=2|a|,则b=±2a,
④若b=±2a,则|b|=2|a|
A.1
B.2
C.3
D.4
2.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,则四边形ABCD的形状是( )
A.矩形
B.平行四边形
C.梯形
D.以上都不对
3.已知向量a,b,c中任意两个都不共线,并且a+b与c共线,b+c与a共线,那么a+b+c等于( )
A.a
B.b
C.c
D.0
4.点P满足向量=2-,则点P与AB的位置关系是( )
A.点P在线段AB上
B.点P在线段AB的延长线上
C.点P在线段AB的反向延长线上
D.点P在直线AB外
5.已知a,b是不共线的向量,=λa+b,=a+μb(λ,μ∈R),那么A,B,C三点共线的充要条件是( )
A.λ+μ=2
B.λ-μ=1
C.λμ=-1
D.λμ=1
6.已知e1,e2是平面内不共线的两个向量,a=2e1-3e2,b=λe1+6e2,若a,b共线,则λ等于________.
7.若=e,=-2e,则四边形ABCD是________.
8.如图所示,在正方形ABCD中,E为BC的中点,F为AE的中点,则=________.(用、表示)
9.在平行四边形ABCD中,E、F分别是BC、CD的中点,DE交AF于H,记、分别为a、b,用a、b表示.
10.如图所示,在平行四边形ABCD中,点M是AB的中点,点N在BD上,且BN=BD.求证:M,N,C三点共线.
11.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足=+λ,λ∈[0,+∞),则点P的轨迹一定通过△ABC的( )
A.外心
B.内心
C.重心
D.垂心
12.给出下列两个命题:
①若a与b共线,则存在唯一实数λ,使a=λb;
②若不存在实数λ,使a=λb,则a与b不共线.
对这两个命题判断正确的是( )
A.①是真命题,②是假命题
B.①是假命题,②是真命题
C.①、②都是真命题
D.①、②都是假命题
13.(多选)平面上点P与不共线的三点A、B、C满足关系:++=,则下列结论错误的是( )
A.P在CA上,且=2
B.P在AB上,且=2
C.P在BC上,且=2
D.P点为△ABC的重心
14.设a,b不共线,=2a+pb,=a+b,=a-2b,若A,B,D三点共线,则实数p=________.
15.如图,在△OBC中,点A是BC的中点,点D是OB上靠近点B的一个三等分点,DC和OA交于点E.设=a,=b.
(1)用向量a,b表示,;
(2)若=λ,求实数λ的值.
答案
1.下列说法中正确的个数是( )
①λa与a的方向不是相同就是相反
②当且仅当a与b共线时,a与a+b共线
③若|b|=2|a|,则b=±2a,
④若b=±2a,则|b|=2|a|
A.1
B.2
C.3
D.4
B [②④正确.]
2.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,则四边形ABCD的形状是( )
A.矩形
B.平行四边形
C.梯形
D.以上都不对
C [由已知=++=-8a-2b=2(-4a-b)=2.
∴∥,又与不平行,
∴四边形ABCD是梯形.]
3.已知向量a,b,c中任意两个都不共线,并且a+b与c共线,b+c与a共线,那么a+b+c等于( )
A.a
B.b
C.c
D.0
D [∵a+b与c共线,∴存在实数λ1,使得a+b=λ1c.①
又∵b+c与a共线,
∴存在实数λ2,使得b+c=λ2a.②
由①得,b=λ1c-a.
∴b+c=λ1c-a+c=(λ1+1)c-a=λ2a,
∴即
∴a+b+c=-c+c=0.]
4.点P满足向量=2-,则点P与AB的位置关系是( )
A.点P在线段AB上
B.点P在线段AB的延长线上
C.点P在线段AB的反向延长线上
D.点P在直线AB外
C [∵=2-,
∴-=-,
∴=,
∴点P在线段AB的反向延长线上,故选C.]
5.已知a,b是不共线的向量,=λa+b,=a+μb(λ,μ∈R),那么A,B,C三点共线的充要条件是( )
A.λ+μ=2
B.λ-μ=1
C.λμ=-1
D.λμ=1
D [由=λa+b,=a+μb(λ,μ∈R)及A,B,C三点共线得:=t,所以λa+b=t(a+μb)=ta+tμb,即可得所以λμ=1.故选D.]
6.已知e1,e2是平面内不共线的两个向量,a=2e1-3e2,b=λe1+6e2,若a,b共线,则λ等于________.
-4 [由a,b共线知,?m∈R,使得a=mb,
于是2e1-3e2=m(λe1+6e2),即(2-mλ)e1=(6m+3)e2,
由于e1,e2不共线,所以所以λ=-4.]
7.若=e,=-2e,则四边形ABCD是________.
梯形 [由题意知=-2,所以∥,且||≠||.]
8.如图所示,在正方形ABCD中,E为BC的中点,F为AE的中点,则=________.(用、表示)
- [=-,=+.
∵E为BC的中点,F为AE的中点,
∴=,=,
∴=-=-=(+)-=+-,
又=,∴=-.]
9.在平行四边形ABCD中,E、F分别是BC、CD的中点,DE交AF于H,记、分别为a、b,用a、b表示.
[解] =b+a,=a-b,设=λ,则=λa-λb,
∴=+=λa+b,
∵与共线且a、b不共线,
∴=,解得λ=,
∴=a+b.
10.如图所示,在平行四边形ABCD中,点M是AB的中点,点N在BD上,且BN=BD.求证:M,N,C三点共线.
[证明] 设=a,=b,
则由向量减法的三角形法则可知:=-=-=a-b.
又∵N在BD上且BD=3BN,
∴==(+)=(a+b),
∴=-=(a+b)-b=a-b=,
∴=,又∵与的公共点为C,
∴M,N,C三点共线.
11.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足=+λ,λ∈[0,+∞),则点P的轨迹一定通过△ABC的( )
A.外心
B.内心
C.重心
D.垂心
B [原式可化为-=λ(e1+e2),其中e1,e2分别是,方向上的单位向量.
∴=λ(e1+e2),(λ≥0),
因此,AP平分∠BAC,
∴P点必落在∠A的平分线上,即P的轨迹一定通过△ABC的内心,故选B.]
12.给出下列两个命题:
①若a与b共线,则存在唯一实数λ,使a=λb;
②若不存在实数λ,使a=λb,则a与b不共线.
对这两个命题判断正确的是( )
A.①是真命题,②是假命题
B.①是假命题,②是真命题
C.①、②都是真命题
D.①、②都是假命题
D [当a≠0,b=0时,a与b共线,但不存在实数λ使a=λb,故①为假命题;
当a≠0,b=0时,不存在实数λ使a=λb,但a与b共线,故②也为假命题.]
13.(多选)平面上点P与不共线的三点A、B、C满足关系:++=,则下列结论错误的是( )
A.P在CA上,且=2
B.P在AB上,且=2
C.P在BC上,且=2
D.P点为△ABC的重心
BCD [++=+=-+==2∥P在CA上.]
14.设a,b不共线,=2a+pb,=a+b,=a-2b,若A,B,D三点共线,则实数p=________.
-1 [∵=a+b,=a-2b,
∴=+=2a-b.又∵A,B,D三点共线,∴,共线.
设=λ,
∴2a+pb=λ(2a-b),
∴2=2λ,p=-λ,∴λ=1,p=-1.]
15.如图,在△OBC中,点A是BC的中点,点D是OB上靠近点B的一个三等分点,DC和OA交于点E.设=a,=b.
(1)用向量a,b表示,;
(2)若=λ,求实数λ的值.
[解] (1)由=(+),得=2-=2a-b,=-=-=2a-b.
(2)∵D,E,C三点共线,
∴可设=m=2ma-mb.①
在△ODE中,=-=λ-=λa-b.②
由①②得2ma-mb=λa-b,即(2m-λ)a=b.
又a,b不共线,
∴∴λ=.