课题:
25.1
.3列举法
概率
备课人:
教学时数
第2课时
授课日期
授课类型
新课
教学目标:
知识与技能:学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。
过程与方法:经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。
情感态度与价值观:通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。
教学重点:
习运用列表法或树形图法计算事件的概率
教学难点:
教学难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。
教学方法:
探究式
教学准备:
多媒体课件
作业布置:
(1)必做题:书本P154/
3,P155/
4,5(2)选做题:①请设计一个游戏,并用列举法计算游戏者获胜的概率。②研究性课题:通过调查学校周围道路的交通状况,为交通部门提出合理的建议等。【设计意图】
通过教学实践作业和社会实践活动,引导学生灵活运用所学知识,让学生把动脑、动口、动手三者结合起来,启发学生的创造性思维,培养协作精神和科学的态度。
板书设计
25.1
.3列举法求概率
①列表
;
②通过表格计数,确定公式P(A)=中m和n的值;③利用公式P(A)=计算事件的概率。
课时备案
二次备案修改
课后反思
教学过程:
1.创设情景,发现新知
教材是通过P151—P152的例5、例6来介绍列表法和树形图法的。例5(教材P151):同时掷两个质地均匀的骰子,计算下列事件的概率:(1)
两个骰子的点数相同;(2)
两个骰子的点数的和是9;(3)
至少有一个骰子的点数为2。这个例题难度较大,事件可能出现的结果有36种。若首先就拿这个例题给学生讲解,大多数学生理解起来会比较困难。所以在这里,我将新课的引入方式改为了一个有实际背景的转盘游戏(前一课已有例2作基础)。(1)创设情景由于事件的随机性,我们必须考虑事件发生概率的大小。此时我首先引导学生观看转盘动画,同学们会发现这个游戏涉及A、B两转盘,
即涉及2个因素,与前一课所讲授单转盘概率问题(教材P148例2)相比,可能产生的结果数目增多了,列举时很容易造成重复或遗漏。怎样避免这个问题呢?实际上,可以将这个游戏分两步进行。
于是,指导学生构造表格首先考虑转动A盘:指针可能指向1,6,8三个数字中的任意一个,可能出现的结果就会有3个。接着考虑转动B盘:当A盘指针指向1时,B盘指针可能指向4、5、7三个数字中的任意一个,这是列举法的简单情况。当A盘指针指向6或8时,B盘指针同样可能指向4、5、7三个数字中的任意一个。一共会产生9种不同的结果。【设计意图】 这样既分散了难点,又激发了学生兴趣,渗透了转化的数学思想。(4)学生独立填写表格,通过观察与计算,得出结论(5)解法:
由图知:可能的结果为:
(1,4),(1,5),(1,7),(6,4),(6,5),(6,7), (8,4),(8,5),(8,7)。共计9种。∴P(A数较大)=
,
P(B数较大)=.
∴P(A数较大)>
P(B数较大)
∴选择A装置的获胜可能性较大。应用新知,深化拓展为了检验学生对列表法和画树形图法的掌握情况,提高应用所学知识解决问题的能力,在此我选择了教材P154课后练习作为随堂练习。(1)经过某十字路口的汽车,它可能继续前行,也可能向左或向右,如果这三种可能性大小相同。三辆汽车经过这个十字路口,求下列事件的概率:①三辆车全部继续前行;②两辆车向右转,一辆车向左转;③至少有两辆车向左转。[随堂练习(1)是一道与实际生活相关的交通问题,可用树形图法来解决。](2)在6张卡片上分别写有1——6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?通过解答随堂练习(2),学生会发现列出的表格和例1的表格完全一样。不同的是:变换了实际背景,设置的问题也不一样。这时,我提出:我们是否可以根据这个表格再编一道用列举法求概率的题目来呢?为了进一步拓展思维,我向学生提出了这样一个问题,供学生课后思考:在前面的引例中,转盘的游戏规则是不公平的,你能把它改成一个公平的游戏吗?【设计意图】
以上问题的提出和解决有利于学生发现数学问题的本质,做到举一反三,融会贯通。4.归纳总结,形成能力我将引导学生从知识、方法、情感三方面来谈一谈这节课的收获。要求每个学生在组内交流,派小组代表发言。【设计意图】
通过这个环节,可以提高学生概括能力、表达能力,有助于学生全面地了解自己的学习过程,感受自己的成长与进步,增强自信,也为教师全面了解学生的学习状况、因材施教提供了重要依据。
1
6
8
开始
A装置
4
5
7
4
5
7
4
5
7
B装置
PAGE