鲁教版(五四制)七上3.1探索勾股定理 教案

文档属性

名称 鲁教版(五四制)七上3.1探索勾股定理 教案
格式 doc
文件大小 2.0MB
资源类型 教案
版本资源 鲁教版
科目 数学
更新时间 2021-08-30 16:59:21

图片预览

文档简介

《第一节探索勾股定理》教学设计
本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.
第一环节:创设情境,引入新课
如图,从电线杆离地面8m处向地面拉一条钢索,
若这条钢索在地面的固定点距离电线杆底部6m,那么需要多长的钢索?
【设计意图】教师展示ppt课件。学生观察、思考,感受直角三角形中任意两条边确定了,另一条边也就随之确定,引出对于直角三角形中三边关系的探索。
第二环节:探索发现勾股定理
1.探究活动一:
内容:(1)投影显示如下地板砖示意图,让学生初步观察:
(2)引导学生从面积角度观察图形:
问:你能发现各图中三个正方形的面积之间有何关系吗?
学生通过观察,归纳发现:
结论1
以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.
效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;
2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.
2.探究活动二:
内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?
(1)观察下面两幅图:
(2)填表:
A的面积(单位面积)
B的面积(单位面积)
C的面积(单位面积)
左图
右图
(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)
     
图1         
图2          
图3
学生的方法可能有:
方法一:
如图1,将正方形C分割为四个全等的直角三角形和一个小正方形,

方法二:
如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,.
方法三:
如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,.
(4)分析填表的数据,你发现了什么?
学生通过分析数据,归纳出:
结论2
以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节.
效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.
3.议一议:
内容:(1)你能用直角三角形的边长、、来表示上图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?
勾股定理(gou-gu
theorem):
如果直角三角形两直角边长分别为、,斜边长为,那么

即直角三角形两直角边的平方和等于斜边的平方.
数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的
直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.
(在西方称为毕达哥拉斯定理)
意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.
效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力.
2.通过作图培养学生的动手实践能力.
第三环节:勾股定理的简单应用
内容:

如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,
树顶落在离树根24m处.
大树在折断之前高多少?
(教师板演解题过程)
练习:1、基础巩固练习:
(口答)求下列图形中未知正方形的面积或未知边的长度:
2、生活中的应用:
 
小明妈妈买了一部29英寸(74厘米)的电视机.
小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?
意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.
效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.
第四环节:课堂小结
内容:教师提问:
1.这一节课我们一起学习了哪些知识和思想方法?
2.对这些内容你有什么体会?请与你的同伴交流.
在学生自由发言的基础上,师生共同总结:
1.知识:勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么.
2.方法:①
观察—探索—猜想—验证—归纳—应用;
 

面积法;
 

“割、补、拼、接”法.
3.思想:①
特殊—一般—特殊;
 ②
数形结合思想.
意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.
效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.
第五环节:布置作业
内容:
作业:1.教科书习题3.1;
2.阅读《读一读》——勾股世界;
3.观察下图,探究图中三角形的三边长是否满足.
意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.
效果:学生进一步加强对本课知识的理解和掌握.