首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
苏教版(2019)
选择性必修第一册
第5章 导数及其应用
本章复习与测试
苏教版(2019)高中数学 选择性必修第一册 培优课 利用导数研究函数零点课件(共16张PPT)+学案
文档属性
名称
苏教版(2019)高中数学 选择性必修第一册 培优课 利用导数研究函数零点课件(共16张PPT)+学案
格式
zip
文件大小
1.3MB
资源类型
教案
版本资源
苏教版(2019)
科目
数学
更新时间
2021-09-03 21:15:24
点击下载
文档简介
培优课 利用导数研究函数零点
1.解决函数y=f(x)的零点问题,可通过求导判断函数图象的位置、形状和发展趋势,观察图象与x轴的位置关系,利用数形结合的思想方法判断函数的零点是否存在及零点的个数等.
2.通过等价变形,可将“函数F(x)=f(x)-g(x)的零点”与“方程f(x)=g(x)的解”相互转化.
类型一 判断零点的个数
【例1】 已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
(2)求函数g(x)=-4ln
x的零点个数.
解 (1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R},
∴设f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0.
∴f(x)min=f(1)=-4a=-4,a=1.
故函数f(x)的解析式为f(x)=x2-2x-3.
(2)由(1)知g(x)=-4ln
x=x--4ln
x-2,
∴g(x)的定义域为(0,+∞),
g′(x)=1+-=,
令g′(x)=0,得x1=1,x2=3.
当x变化时,g′(x),g(x)的取值变化情况如下表:
x
(0,1)
1
(1,3)
3
(3,+∞)
g′(x)
+
0
-
0
+
g(x)
?
极大值
?
极小值
?
当0
当x>3时,g(e5)=e5--20-2>25-1-22=9>0.
又因为g(x)在(3,+∞)上单调递增,
因而g(x)在(3,+∞)上只有1个零点,
故g(x)仅有1个零点.
思维升华 利用导数确定函数零点或方程根个数的常用方法
(1)构建函数g(x)(要求g′(x)易求,g′(x)=0可解),转化为确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.
(2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.
类型二 已知函数零点个数求参数的取值范围
【例2】 函数f(x)=ax+xln
x在x=1处取得极值.
(1)求f(x)的单调区间;
(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.
解 (1)函数f(x)=ax+xln
x的定义域为(0,+∞),
f′(x)=a+ln
x+1.
因为f′(1)=a+1=0,解得a=-1,
故f(x)=-x+xln
x,f′(x)=ln
x,
令f′(x)>0,解得x>1;
令f′(x)<0,解得0
所以f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).
(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+1的图象有两个不同的交点.
由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,
由题意得,m+1>-1,
即m>-2,①
当0
x)<0;当x>e时,f(x)>0.
当x>0且x→0时,f(x)→0;
当x→+∞时,显然f(x)→+∞.
由图象可知,m+1<0,
即m<-1,②
由①②可得-2
所以m的取值范围是(-2,-1).
思维升华 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.
尝试训练
1.设函数f(x)=ln
x+(m>0),讨论函数g(x)=f′(x)-零点的个数.
解 函数g(x)=f′(x)-=--(x>0),
令g(x)=0,得m=-x3+x(x>0).
设h(x)=-x3+x(x>0),
所以h′(x)=-x2+1=-(x-1)(x+1).
当x∈(0,1)时,h′(x)>0,此时h(x)在(0,1)内单调递增;当x∈(1,+∞)时,h′(x)<0,此时h(x)在(1,+∞)内单调递减.
所以当x=1时,h(x)取得极大值h(1)=-+1=.
令h(x)=0,即-x3+x=0,解得x=0(舍去)或x=.
作出函数h(x)的大致图象(如图),结合图象知:
①当m>时,函数y=m和函数y=h(x)的图象无交点.
②当m=时,函数y=m和函数y=h(x)的图象有且仅有一个交点.
③当0
综上所述,当m>时,函数g(x)无零点;当m=时,函数g(x)有且仅有一个零点;当0
2.
已知函数f(x)=ex+ax-a(a∈R且a≠0).
(1)若f(0)=2,求实数a的值,并求此时f(x)在[-2,1]上的最小值;
(2)若函数f(x)不存在零点,求实数a的取值范围.
解 (1)由题意知,函数f(x)的定义域为R,
又f(0)=1-a=2,得a=-1,
所以f(x)=ex-x+1,求导得f′(x)=ex-1.
易知f(x)在[-2,0]上单调递减,在[0,1]上单调递增,
所以当x=0时,f(x)在[-2,1]上取得最小值2.
(2)由(1)知f′(x)=ex+a,由于ex>0,
①当a>0时,f′(x)>0,f(x)在R上是增函数,
当x>1时,f(x)=ex+a(x-1)>0;
当x<0时,取x=-,
则f<1+a=-a<0.
所以函数f(x)存在零点,不满足题意.
②当a<0时,令f′(x)=0,得x=ln(-a).
在(-∞,ln(-a))上,f′(x)<0,f(x)单调递减,
在(ln(-a),+∞)上,f′(x)>0,f(x)单调递增,
所以当x=ln(-a)时,f(x)取最小值.
函数f(x)不存在零点,等价于f(ln(-a))=eln(-a)+aln(-a)-a=-2a+aln(-a)>0,
解得-e2
综上所述,所求实数a的取值范围是(-e2,0).(共16张PPT)
培优课 利用导数研究函数零点
1.解决函数y=f(x)的零点问题,可通过求导判断函数图象的位置、形状和发展趋势,观察图象与x轴的位置关系,利用数形结合的思想方法判断函数的零点是否存在及零点的个数等.
2.通过等价变形,可将“函数F(x)=f(x)-g(x)的零点”与“方程f(x)=g(x)的解”相互转化.
类型一 判断零点的个数
【例1】 已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
解 ∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R},
∴设f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0.
∴f(x)min=f(1)=-4a=-4,a=1.
故函数f(x)的解析式为f(x)=x2-2x-3.
令g′(x)=0,得x1=1,x2=3.
当x变化时,g′(x),g(x)的取值变化情况如下表:
x
(0,1)
1
(1,3)
3
(3,+∞)
g′(x)
+
0
-
0
+
g(x)
极大值
极小值
当0
又因为g(x)在(3,+∞)上单调递增,
因而g(x)在(3,+∞)上只有1个零点,
故g(x)仅有1个零点.
利用导数确定函数零点或方程根个数的常用方法
(1)构建函数g(x)(要求g′(x)易求,g′(x)=0可解),转化为确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.
(2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.
思维升华
【例2】 函数f(x)=ax+xln
x在x=1处取得极值.
类型二 已知函数零点个数求参数的取值范围
(1)求f(x)的单调区间;
解 函数f(x)=ax+xln
x的定义域为(0,+∞),f′(x)=a+ln
x+1.
因为f′(1)=a+1=0,解得a=-1,
故f(x)=-x+xln
x,f′(x)=ln
x,
令f′(x)>0,解得x>1;
令f′(x)<0,解得0
所以f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).
(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.
解 y=f(x)-m-1在(0,+∞)内有两个不同的零点,
可转化为y=f(x)与y=m+1的图象有两个不同的交点.
由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,
由题意得,m+1>-1,
即m>-2,①
当0
x)<0;当x>e时,f(x)>0.
当x>0且x→0时,f(x)→0;
当x→+∞时,显然f(x)→+∞.
由图象可知,m+1<0,
即m<-1,②
由①②可得-2
所以m的取值范围是(-2,-1).
与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.
思维升华
尝试训练
所以h′(x)=-x2+1=-(x-1)(x+1).
当x∈(0,1)时,h′(x)>0,此时h(x)在(0,1)内单调递增;当x∈(1,+∞)时,h′(x)<0,此时h(x)在(1,+∞)内单调递减.
作出函数h(x)的大致图象(如图),结合图象知:
2.
已知函数f(x)=ex+ax-a(a∈R且a≠0).
(1)若f(0)=2,求实数a的值,并求此时f(x)在[-2,1]上的最小值;
解 由题意知,函数f(x)的定义域为R,
又f(0)=1-a=2,得a=-1,
所以f(x)=ex-x+1,求导得f′(x)=ex-1.
易知f(x)在[-2,0]上单调递减,在[0,1]上单调递增,
所以当x=0时,f(x)在[-2,1]上取得最小值2.
(2)若函数f(x)不存在零点,求实数a的取值范围.
解
由(1)知f′(x)=ex+a,由于ex>0,
①当a>0时,f′(x)>0,f(x)在R上是增函数,
当x>1时,f(x)=ex+a(x-1)>0;
所以函数f(x)存在零点,不满足题意.
②当a<0时,令f′(x)=0,得x=ln(-a).
在(-∞,ln(-a))上,f′(x)<0,f(x)单调递减,
在(ln(-a),+∞)上,f′(x)>0,f(x)单调递增,
所以当x=ln(-a)时,f(x)取最小值.
函数f(x)不存在零点,等价于f(ln(-a))=eln(-a)+aln(-a)-a=-2a+aln(-a)>0,
解得-e2
综上所述,所求实数a的取值范围是(-e2,0).
本节内容结束
点击下载
同课章节目录
第1章 直线与方程
1.1 直线的斜率与倾斜角
1.2 直线的方程
1.3 两条直线的平行与垂直
1.4 两条直线的交点
1.5 平面上的距离
第2章 圆与方程
2.1 圆的方程
2.2 直线与圆的位置关系
2.3 圆与圆的位置关系
第3章 圆锥曲线与方程
3.1 椭圆
3.2 双曲线
3.3 抛物线
第4章 数列
4.1 数列
4.2 等差数列
4.3 等比数列
4.4 数学归纳法*
第5章 导数及其应用
5.1 导数的概念
5.2 导数的运算
5.3 导数在研究函数中的应用
点击下载
VIP下载