1. (安徽1)复数满足:;则( )
【解析】选
3.北京3.设a,b∈R。“a=0”是“复数a+bi是纯虚数”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
【解析】当时,如果同时等于零,此时是实数,不是纯虚数,因此不是充分条件;而如果已经为纯虚数,由定义实部为零,虚部不为零可以得到,因此想必要条件,故选B。
【答案】B
4.福建1若复数满足,则等于( )
A. B. C. D.
考点:复数的运算。
难度:易。
分析:本题考查的知识点为复数的计算,直接套用复数运算公式即可。
解答:
。
5.广东1. 设为虚数单位,则复数=( )
【解析】选 依题意:,故选.
6.湖北1.方程的一个根是
A. B. C. D.
考点分析:本题考察复数的一元二次方程求根.
难易度:★
解析:根据复数求根公式:,所以方程的一个根为
答案为A.
7.湖南12.已知复数 (i为虚数单位),则|z|=_____.
【答案】10
【解析】=,.
【点评】本题考查复数的运算、复数的模.把复数化成标准的形式,利用
求得.
8.江苏3.(2012年江苏省5分)设,(i为虚数单位),则的值为 ▲ .
【答案】8。
【考点】复数的运算和复数的概念。
【分析】由得,所以, 。
9辽宁2.复数
A. B. C. D.
【命题意图】本题主要考查复数的除法运算,是容易题.
【解析】,故选A.
10. 全国卷大纲版1.复数
A. B. C. D.
答案C
【命题意图】本试题主要考查了复数的四则运算法则。通过利用除法运算来求解。
【解析】因为
11山东1 若复数x满足z(2-i)=11+7i(i为虚数单位),则z为
A 3+5i B 3-5i C -3+5i D -3-5i
解析:.答案选A。
另解:设,则
根据复数相等可知,解得,于是。
12陕西. 设,是虚数单位,则“”是“复数为纯虚数”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
【解析】“”则或,“复数为纯虚数”则且,则
“”是“复数为纯虚数”的必要不充分条件,故选B
13上海1.计算: (为虚数单位).
【答案】
【解析】.
【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可.
14四川2、复数( )
A、 B、 C、 D、
[答案]B.
[解析]
[点评]突出考查知识点,不需采用分母实数化等常规方法,分子直接展开就可以.
15天津(1)是虚数单位,复数=
(A) (B) (C) (D)
1.B
【命题意图】本试题主要考查了复数的概念以及复数的加、减、乘、除四则运算.
【解析】===
16新课标(3)下面是关于复数的四个命题:其中的真命题为( )
的共轭复数为 的虚部为
【解析】选
,,的共轭复数为,的虚部为
17.浙江2.已知i是虚数单位,则=
A.1-2i B.2-i C.2+i D.1+2i
【解析】===1+2i.
【答案】D
18重庆11、若,其中为虚数单位,则 ;
【解析】
19.上海15.若是关于的实系数方程的一个复数根,则( )
A. B. C. D.
【答案】 B
【解析】根据实系数方程的根的特点也是该方程的另一个根,所以
,即,,故答案选择B.
【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意.1.(安徽2)下列函数中,不满足:的是( )
【解析】选
与均满足:得:满足条件
2.(安徽19)(本小题满分13分)K]
设
(I)求在上的最小值;
(II)设曲线在点的切线方程为;求的值。
【解析】(I)设;则
①当时,在上是增函数
得:当时,的最小值为
②当时,
当且仅当时,的最小值为
(II)
由题意得:
3.北京14.已知,,若同时满足条件:
①,或;
②, 。
则m的取值范围是_______。
【解析】根据,可解得。由于题目中第一个条件的限制,或成立的限制,导致在时必须是的。当时,不能做到在时,所以舍掉。因此,作为二次函数开口只能向下,故,且此时两个根为,。为保证此条件成立,需要,和大前提取交集结果为;又由于条件2:要求,0的限制,可分析得出在时,恒负,因此就需要在这个范围内有得正数的可能,即应该比两根中小的那个大,当时,,解得,交集为空,舍。当时,两个根同为,舍。当时,,解得,综上所述.
【答案】
4.北京18.(本小题共13分)
已知函数,.
(1)若曲线与曲线在它们的交点处具有公共切线,求,的值;
(2)当时,求函数的单调区间,并求其在区间上的最大值.
解:( )由为公共切点可得:
,则,,
,则,,
①
又,,
,即,代入①式可得:.
(2),设
则,令,解得:,;
,,
原函数在单调递增,在单调递减,在上单调递增
①若,即时,最大值为;
②若,即时,最大值为
③若时,即时,最大值为.
综上所述:
当时,最大值为;当时,最大值为.
5.福建5.下列不等式一定成立的是( )
A. B.
C. D.
考点:不等式及基本不等式。
难度:中。
分析:本题考查的知识点为不等式的性质及基本不等式的性质。
解答:A中,。
B中,;。
C中,。
D中,。
6.福建7.设函数,则下列结论错误的是( )
A.的值域为 B.是偶函数
C.不是周期函数 D.不是单调函数
考点:分段函数的解析式及其图像的作法。
难度:中。
分析:本题考查的知识点为分段函数的定义,单调性、奇偶性和周期性的定义和判定。
解答:A中,由定义直接可得,的值域为。
B中,定义域为,,所以为偶函数。
C中,,所以可以找到1为的一个周期。
D中,,所以不是单调函数。
7.福建10.函数在上有定义,若对任意,有,则称在上具有性质。设在[1,3]上具有性质,现给出如下命题:
①在上的图像时连续不断的;
②在上具有性质;
③若在处取得最大值1,则,;
④对任意,有。
其中真命题的序号是( )
A.①② B.①③ C.②④ D.③④
考点:演绎推理和函数。
难度:难。
分析:本题考查的知识点为函数定义的理解,说明一个结论错误只需举出反例即可,说明一个结论正确要证明对所有的情况都成立。
解答:A中,反例:如图所示的函数的是满足性质的,但不是连续不断的。
B中,反例:在上具有性质,在上不具有性质。
C中,在上,,
,
所以,对于任意。
D中,
。
8.福建15.对于实数,定义运算“”:,设,且关于的方程为恰有三个互不相等的实数根,则的取值范围是_____。【】
考点:演绎推理和函数。
难度:难。
分析:本题考查的知识点为新定义的理解,函数与方程中根的个数。
解答:由题可得,
可得,
且
所以时,,
所以。
9.福建20.(本小题满分14分)
已知函数
(Ⅰ)若曲线在点处的切线平行于轴,求函数的单调区间;
(Ⅱ)试确定的取值范围,使得曲线上存在唯一的点,曲线在该点处的切线与曲线只有一个公共点。
考点:导数。
难度:难。
分析:
解答:
(Ⅰ)
由题意得:
得:函数的单调递增区间为,单调递减区间为
(Ⅱ)设; 则过切点的切线方程为
令;则
切线与曲线只有一个公共点只有一个根
,且
(1)当时,
得:当且仅当时,
由的任意性,不符合条件(lby lfx)
(2)当时,令
①当时,
当且仅当时,在上单调递增
只有一个根
②当时,
得:,又
存在两个数使,
得:又
存在使,与条件不符。
③当时,同理可证,与条件不符
从上得:当时,存在唯一的点使该点处的切线与曲线只有一个公共点
10.广东4. 下列函数中,在区间上为增函数的是( )
【解析】选 区间上为增函数,区间上为减函数
区间上为减函数,区间上为增函数
11.广东12. 曲线在点处的切线方程为
【解析】切线方程为
切线方程为即
12.广东21.(本小题满分14分)
设,集合,,。
(1)求集合(用区间表示)
(2)求函数在内的极值点。
【解析】(1)对于方程
判别式
因为,所以
当时,,此时,所以;
当时,,此时,所以;
当时,,设方程的两根为且,则
,
当时,,,所以
此时,
当时,,所以
此时,
(2),
所以函数在区间上为减函数,在区间和上为增函数
①是极点
②是极点
得:时,函数无极值点,时,函数极值点为,
时,函数极值点为与
13.湖北7.定义在上的函数,如果对于任意给定的等比数列, 仍
是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函
数:
①; ②; ③; ④.
则其中是“保等比数列函数”的的序号为
① ② B.③ ④ C.① ③ D.② ④
考点分析:本题考察等比数列性质及函数计算.
难易度:★
解析:等比数列性质,,①; ②;③;④.选C
14.湖北9.函数在区间上的零点个数为
A.4 B.5
C.6 D.7
考点分析:本题考察三角函数的周期性以及零点的概念.
难易度:★
解析:,则或,,又,
所以共有6个解.选C.
15.湖北22.(本小题满分14分)
(Ⅰ)已知函数,其中为有理数,且. 求的
最小值;
(Ⅱ)试用(Ⅰ)的结果证明如下命题:
设,为正有理数. 若,则;
(Ⅲ)请将(Ⅱ)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.
注:当为正有理数时,有求导公式.
22.解:(Ⅰ),令,解得.
当时,,所以在内是减函数;
当 时,,所以在内是增函数.
故函数在处取得最小值.
(Ⅱ)由(Ⅰ)知,当时,有,即 ①
若,中有一个为0,则成立;
若,均不为0,又,可得,于是
在①中令,,可得,
即,亦即.
综上,对,,为正有理数且,总有. ②
(Ⅲ)(Ⅱ)中命题的推广形式为:
设为非负实数,为正有理数.
若,则. ③
用数学归纳法证明如下:
(1)当时,,有,③成立.
(2)假设当时,③成立,即若为非负实数,为正有理数,
且,则.
当时,已知为非负实数,为正有理数,
且,此时,即,于是
=.
因,由归纳假设可得
,
从而.
又因,由②得
,
从而.
故当时,③成立.
由(1)(2)可知,对一切正整数,所推广的命题成立.
说明:(Ⅲ)中如果推广形式中指出③式对成立,则后续证明中不需讨论的情况.
16.湖南8.已知两条直线 :y=m 和: y=(m>0),与函数的图像从左至右相交于点A,B ,与函数的图像从左至右相交于C,D .记线段AC和BD在X轴上的投影长度分别为a ,b ,当m 变化时,的最小值为[来源%&:中国~*教育#出版网]
A. B. C. D.
【答案】B
【解析】在同一坐标系中作出y=m,y=(m>0),图像如下图,
由= m,得,= ,得.
依照题意得.
,.
【点评】在同一坐标系中作出y=m,y=(m>0),图像,结合图像可解得.
17湖南20.(本小题满分13分)[来#源:中教%&*网~]
某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数).
(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.
【解析】
解:(Ⅰ)设完成A,B,C三种部件的生产任务需要的时间(单位:天)分别为
由题设有
期中均为1到200之间的正整数.
(Ⅱ)完成订单任务的时间为其定义域为
易知,为减函数,为增函数.注意到
于是
(1)当时, 此时
,
由函数的单调性知,当时取得最小值,解得
.由于
.
故当时完成订单任务的时间最短,且最短时间为.
(2)当时, 由于为正整数,故,此时易知为增函数,则
.
由函数的单调性知,当时取得最小值,解得.由于
此时完成订单任务的最短时间大于.
(3)当时, 由于为正整数,故,此时由函数的单调性知,
当时取得最小值,解得.类似(1)的讨论.此时
完成订单任务的最短时间为,大于.
综上所述,当时完成订单任务的时间最短,此时生产A,B,C三种部件的人数
分别为44,88,68.
【点评】本题为函数的应用题,考查分段函数、函数单调性、最值等,考查运算能力及用数学知识分析解决实际应用问题的能力.第一问建立函数模型;第二问利用单调性与最值来解决,体现分类讨论思想.
18.湖南22.(本小题满分13分)
已知函数=,其中a≠0.[来源︿:zz#~s&tep.@com]
若对一切x∈R,≥1恒成立,求a的取值集合.
(2)在函数的图像上取定两点,,记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使成立?若存在,求的取值范围;若不存在,请说明理由.
【解析】(Ⅰ)若,则对一切,,这与题设矛盾,又,
故.
而令
当时,单调递减;当时,单调递增,故当时,取最小值
于是对一切恒成立,当且仅当
. ①
令则
当时,单调递增;当时,单调递减.
故当时,取最大值.因此,当且仅当即时,①式成立.
综上所述,的取值集合为.
(Ⅱ)由题意知,
令则
令,则.
当时,单调递减;当时,单调递增.
故当,即
从而,又
所以
因为函数在区间上的图像是连续不断的一条曲线,所以存在使单调递增,故这样的是唯一的,且.故当且仅当时, .
综上所述,存在使成立.且的取值范围为
.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为,从而得出a的取值集合;第二问在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断.
19.江苏5.(2012年江苏省5分)函数的定义域为 ▲ .
【答案】。
【考点】函数的定义域,二次根式和对数函数有意义的条件,解对数不等式。
【解析】根据二次根式和对数函数有意义的条件,得
。
20.江苏10.(2012年江苏省5分)设是定义在上且周期为2的函数,在区间上,
其中.若,
则的值为 ▲ .
【答案】。
【考点】周期函数的性质。
【解析】∵是定义在上且周期为2的函数,∴,即①。
又∵,,
∴②。
联立①②,解得,。∴。
21.江苏17.(2012年江苏省14分)如图,建立平面直角坐标系,轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,
炮弹可以击中它?请说明理由.
【答案】解:(1)在中,令,得。
由实际意义和题设条件知。
∴,当且仅当时取等号。
∴炮的最大射程是10千米。
(2)∵,∴炮弹可以击中目标等价于存在,使成立,
即关于的方程有正根。
由得。
此时,(不考虑另一根)。
∴当不超过6千米时,炮弹可以击中目标。
【考点】函数、方程和基本不等式的应用。
【解析】(1)求炮的最大射程即求与轴的横坐标,求出后应用基本不等式求解。
(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解。
22.江苏18.(2012年江苏省16分)若函数在处取得极大值或极小值,则称为函数的极值点。
已知是实数,1和是函数的两个极值点.
(1)求和的值;
(2)设函数的导函数,求的极值点;
(3)设,其中,求函数的零点个数.
【答案】解:(1)由,得。
∵1和是函数的两个极值点,
∴ ,,解得。
(2)∵ 由(1)得, ,
∴,解得。
∵当时,;当时,,
∴是的极值点。
∵当或时,,∴ 不是的极值点。
∴的极值点是-2。
(3)令,则。
先讨论关于 的方程 根的情况:
当时,由(2 )可知,的两个不同的根为I 和一2 ,注意到是奇函数,∴的两个不同的根为一和2。
当时,∵, ,
∴一2 , -1,1 ,2 都不是的根。
由(1)知。
① 当时, ,于是是单调增函数,从而。
此时在无实根。
② 当时.,于是是单调增函数。
又∵,,的图象不间断,
∴ 在(1 , 2 )内有唯一实根。
同理,在(一2 ,一I )内有唯一实根。
③ 当时,,于是是单调减两数。
又∵, ,的图象不间断,
∴在(一1,1 )内有唯一实根。
因此,当时,有两个不同的根满足;当 时
有三个不同的根,满足。
现考虑函数的零点:
( i )当时,有两个根,满足。
而有三个不同的根,有两个不同的根,故有5 个零点。
( 11 )当时,有三个不同的根,满足。
而有三个不同的根,故有9 个零点。
综上所述,当时,函数有5 个零点;当时,函数有9 个零点。
【考点】函数的概念和性质,导数的应用。
【解析】(1)求出的导数,根据1和是函数的两个极值点代入列方程组求解即可。
(2)由(1)得,,求出,令,求解讨论即可。
(3)比较复杂,先分和讨论关于 的方程 根的情况;再考虑函数的零点。
23.江西2.下列函数中,与函数y=定义域相同的函数为( )
A.y= B.y= C.y=xex D.
2.D 【解析】本题考查常有关对数函数,指数函数,分式函数的定义域以及三角函数的值域.
函数的定义域为,而答案中只有的定义域为.故选D.
【点评】求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围.其求解根据一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对数的真数大于0:(4)实际问题还需要考虑使题目本身有意义.体现考纲中要求了解一些简单函数的定义域,来年需要注意一些常见函数:带有分式,对数,偶次根式等的函数的定义域的求法.
24.江西3.若函数,则=( )
A.lg101 B.b C.1 D.0
3.B 【解析】本题考查分段函数的求值
因为,所以.所以.
【点评】对于分段函数结合复合函数的求值问题,一定要先求内层函数的值,因为内层函数的函数值就是外层函数的自变量的值.另外,要注意自变量的取值对应着哪一段区间,就使用哪一段解析式,体现考纲中要求了解简单的分段函数并能应用,来年需要注意分段函数的分段区间及其对应区间上的解析式,千万别代错解析式.
25江西10.如右图,已知正四棱锥所有棱长都为1,点E是侧棱上一动点,过点垂直于的截面将正四棱锥分成上、下两部分,记截面下面部分的体积为则函数的图像大致为
10.A【解析】本题综合考查了棱锥的体积公式,线面垂直,同时考查了函数的思想,导数法解决几何问题等重要的解题方法.
(定性法)当时,随着的增大,观察图形可知,单调递减,且递减的速度越来越快;当时,随着的增大,观察图形可知,单调递减,且递减的速度越来越慢;再观察各选项中的图象,发现只有A图象符合.故选A.
【点评】对于函数图象的识别问题,若函数的图象对应的解析式不好求时,作为选择题,没必要去求解具体的解析式,不但方法繁琐,而且计算复杂,很容易出现某一步的计算错误而造成前功尽弃;再次,作为选择题也没有太多的时间去给学生解答;因此,使用定性法,不但求解快速,而且准确节约时间.
26江西21. (本小题满分14分)
若函数h(x)满足
(1)h(0)=1,h(1)=0;
(2)对任意,有h(h(a))=a;
(3)在(0,1)上单调递减。
则称h(x)为补函数。已知函数
(1)判函数h(x)是否为补函数,并证明你的结论;
(2)若存在,使得h(m)=m,称m是函数h(x)的中介元,记时h(x)的中介元为xn,且,若对任意的,都有Sn< ,求的取值范围;
(3)当=0,时,函数y= h(x)的图像总在直线y=1-x的上方,求P的取值范围。
21.(本小题满分14分)
解:(1)函数是补函数。证明如下:
①;
②;
③令,有,
因为,所以当时,,所以在(0,1)上单调递减,故函数在(0,1)上单调递减。
当,由,得:
①当时,中介元;
②当且时,由(*)可得或;
得中介元,综上有对任意的,中介元()
于是,当时,有=
当n无限增大时, 无限接近于, 无限接近于,故对任意的,成立等价于,即 ;
当时, ,中介元是
①当时, ,中介元为,所以点不在直线y=1-x的上方,不符合条件;
②当时,依题意只须在时恒成立,也即在时恒成立,设,,则,
由可得,且当时,,当时,,又因为=1,所以当时, 恒成立。
综上:p的取值范围为(1,+)。
27辽宁11. 设函数满足,且当时,.又函数,则函数在上的零点个数为
A.5 B.6 C.7 D.8
【命题意图】本题主要考查函数的奇偶性、对称性、周期性、函数图像、函数零点等基础知识,是难题.
【解析】由知,所以函数为偶函数,所以,所以函数为周期为2的周期函数,且,而为偶函数,且,在同一坐标系下作出两函数在上的图像,发现在内图像共有6个公共点,则函数在上的零点个数为6,故选B.
28辽宁12. 若,则下列不等式恒成立的是
A. B.
C. D.
【命题意图】本题主要考查不等式恒成立问题,是难题.
【解析】验证A,当,故排除A;验证B,当,
,而,故排除B;
验证C,令,显然恒成立
所以当,,所以,为增函数,所以
,恒成立,故选C;验证D,令
,令,解得,所以当时,,显然不恒成立,故选C.
29辽宁21. (本小题满分12分)设,曲线与直线在点相切.
(1)求的值;
(2)证明:当时,
【命题意图】本题主要考查函数的切线及恒成立问题,考查运算求解能力,是难题.
【解析】(1)由的图像过点,代入得
由在处的切线斜率为,又,得…3分
(2)(证法一)由均值不等式,当时,,故
记,则
,令,则当时,
因此在内是减函数,又由,得,所以
因此在内是减函数,又由,得,
于是当时, …12分
(证法二)
由(1)知,由均值不等式,当时,,故
令,则,故,即,由此得,当时,,记,则当时,
因此在内是减函数,又由,得,即
30全国卷大纲版9.已知,则
A. B. C. D.
答案D
【命题意图】本试题主要考查了对数、指数的比较大小的运用,采用中间值大小比较方法。
【解析】,,,故选答案D。
31全国卷大纲版10.已知函数的图像与轴恰有两个公共点,则
A.或2 B.或3 C.或1 D.或1
答案A
【命题意图】本试题主要考查了导数在研究三次函数中的极值的运用。要是函数图像与轴有两个不同的交点,则需要满足极佳中一个为零即可。
【解析】因为三次函数的图像与轴恰有两个公共点,结合该函数的图像,可得极大值或者极小值为零即可满足要求。而,当时取得极值
由或可得或,即。
32全国卷大纲版20.(本小题满分12分)(注意:在试题卷上作答无效)
设函数。
(1)讨论的单调性;
(2)设,求的取值范围。
【命题意图】本试题考查了导数在研究函数中的运用。第一就是函数中有三角函数,要利用三角函数的有界性,求解单调区间。另外就是运用导数证明不等式问题的构造函数思想的运用。
解:。
(Ⅰ)因为,所以。
当时,,在上为单调递增函数;
当时,,在上为单调递减函数;
当时,由得,
由得或;
由得。
所以当时在和上为为单调递增函数;在上为单调递减函数。
(Ⅱ)因为
当时,恒成立
当时,
令,则
又令,则
则当时,,故,单调递减
当时,,故,单调递增
所以在时有最小值,而
,
综上可知时,,故在区间单调递
所以
故所求的取值范围为。
另解:由恒成立可得
令,则
当时,,当时,21世纪教育网
又,所以,即
故当时,有(lbylf x)
①当时,,,所以
②当时,
综上可知故所求的取值范围为。
【点评】试题分为两问,题词面比较简单,给出的函数比较新颖,因为里面还有三角函数,这一点对于同学们来说有点难度,不同于平时的练习题,相对来说做得比较少。但是解决的关键还是要看导数的符号,求解单调区间。第二问中,运用构造函数的思想,证明不等式,一直以来是个难点,那么这类问题的关键是找到合适的函数,运用导数证明最值大于或者小于零的问题得到解决。
33.山东 3 设a>0 a≠1 ,则“函数f(x)= ax在R上是减函数 ”,是“函数g(x)=(2-a) 在R上是增函数”的
A 充分不必要条件 B 必要不充分条件 21世纪教育网
C 充分必要条件 D 既不充分也不必要条件
解析:p:“函数f(x)= ax在R上是减函数 ”等价于;q:“函数g(x)=(2-a) 在R上是增函数”等价于,即且a≠1,故p是q成立的充分不必要条件. 答案选A。
34.山东(8)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x。则f(1)+f(2)+f(3)+…+f(2012)=
(A)335(B)338(C)1678(D)2012
解析:,而函数的周期为6,
.
答案应选B
35山东(9) 函数的图象大致为
为偶函数,为奇函数,所以为奇函数,故可排除A,又当时,恒成立,所以只需研究的值,当时,的值为正,值也为正,故可排除B,而且已知的值不可能在某一个自变量之后恒为正,故可排除C,故选D
解析:函数,为奇函数,
当,且时;当,且时;
当,,;当,,.
答案应选D。
36山东(12) 设函数.若的图像与的图像有且仅有两个不同的公共点则下列判断正确的是
(A)当时,(B) 当时,(C) 当时,(D) 当时,
解析:令,则,设,
令,则,要使y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点只需,整理得,于是可取来研究,当时,,解得,此时,此时;当时,,解得,此时,此时.答案应选B。
另解:令可得。
设
不妨设,结合图形可知,
当时如右图,此时,
即,此时,,即;同理可由图形经过推理可得当时.答案应选B。
37.山东(22)(本小题满分13分)
已知函数(为常数,是自然对数的底数),曲线 在点处的切线与轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中是的导函数.证明:对任意,
.
(22)解:
(Ⅰ),依题意,为所求.
(Ⅱ)此时
记,,所以在,单减,又,
所以,当时,,,单增;
当 时,,,单减.
所以,增区间为(0,1);
减区间为(1,.
(Ⅲ),先研究,再研究.
① 记,,令,得,
当,时,,单增;
当,时,,单减 .
所以,,即.
② 记,,所以在,单减,
所以,,即
综①、②知,.
38陕西2. 下列函数中,既是奇函数又是增函数的为( )
A. B. C. D.
【解析】选项中是奇函数的有B、C、D,增函数有D,故选D
39陕西7. 设函数,则( )
A.为的极大值点 B.为的极小值点
C.为的极大值点 D.为的极小值点【解析】,,恒成立,令,则
当时,,函数单调减,当时,,函数单调增,
则为的极小值点,故选D
40陕西14. 设函数,是由轴和曲线及该曲线在点处的切线所围成的封闭区域,则在上的最大值为 .
【答案】2
【解析】当时,,,∴曲线在点处的切线为
则根据题意可画出可行域D如右图:
目标函数,
当,时,z取得最大值2
41陕西21. (本小题满分14分)
设函数
(1)设,,证明:在区间内存在唯一的零点;
(2)设,若对任意,有,求的取值范围;
(3)在(1)的条件下,设是在内的零点,判断数列的增减性.
【解析】(1)
。
又当
(2)当n=2时,
对任意上的最大值与最小值之差,据此分类讨论如下:
(Ⅰ)
。
(Ⅱ)
。
(Ⅲ)
。
综上可知,。
注:(Ⅱ) (Ⅲ)也可合并并证明如下:
用
当
(3)证法一:设,
于是有,
又由(1)知,
所以,数列
证法二:设,
,
则
所以,数列
42上海7.已知函数(为常数).若在区间上是增函数,则的取值范围是 .
【答案】
【解析】根据函数看出当时函数增函数,而已知函数在区间上为增函数,所以的取值范围为: .
【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.
43上海9.已知是奇函数,且,若,则 .
【答案】
【解析】因为函数为奇函数,所以 .
【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数为奇函数,所以有这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.
44上海20.已知函数.
(1)若,求的取值范围;(6分)
(2)若是以2为周期的偶函数,且当时,有,求函数
的反函数.(8分)
[解](1)由,得.
由得. ……3分
因为,所以,.
由得. ……6分
(2)当x[1,2]时,2-x[0,1],因此
. ……10分
由单调性可得.
因为,所以所求反函数是,. ……14分
【点评】本题主要考查函数的概念、性质、分段函数等基础知识.考查数形结合思想,熟练掌握指数函数、对数函数、幂函数的图象与性质,属于中档题.
上海21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴
正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海
里A处,如图. 现假设:①失事船的移动路径可视为抛物线
;②定位后救援船即刻沿直线匀速前往救援;③救
援船出发小时后,失事船所在位置的横坐标为.
(1)当时,写出失事船所在位置P的纵坐标. 若此时
两船恰好会合,求救援船速度的大小和方向;(6分)
(2)问救援船的时速至少是多少海里才能追上失事船?(8分)
[解](1)时,P的横坐标xP=,代入抛物线方程
中,得P的纵坐标yP=3. ……2分
由|AP|=,得救援船速度的大小为海里/时. ……4分
由tan∠OAP=,得∠OAP=arctan,故救援船速度的方向
为北偏东arctan弧度. ……6分
(2)设救援船的时速为海里,经过小时追上失事船,此时位置为.
由,整理得.……10分
因为,当且仅当=1时等号成立,
所以,即.
因此,救援船的时速至少是25海里才能追上失事船.
45.四川3、函数在处的极限是( )
A、不存在 B、等于 C、等于 D、等于
[答案]A
[解析]分段函数在x=3处不是无限靠近同一个值,故不存在极限.
[点评]对于分段函数,掌握好定义域的范围是关键。
46四川5、函数的图象可能是( )
[答案]C
[解析]采用排除法. 函数恒过(1,0),选项只有C符合,故选C.
47四川22、(本小题满分14分)
已知为正实数,为自然数,抛物线与轴正半轴相交于点,设为该抛物线在点处的切线在轴上的截距。
(Ⅰ)用和表示;
(Ⅱ)求对所有都有成立的的最小值;
(Ⅲ)当时,比较与的大小,并说明理由。
[解析](1)由已知得,交点A的坐标为,对则抛物线在点A处的切线方程为
由(1)知f(n)=,则
即知,对于所有的n成立,特别地,取n=2时,得到a≥
当,
>2n3+1
当n=0,1,2时,显然
故当a=时,对所有自然数都成立
所以满足条件的a的最小值是。
(3)由(1)知,则,
下面证明:
首先证明:当0
设函数
当
故g(x)在区间(0,1)上的最小值g(x)min=g
所以,当0由0[点评]本小题属于高档题,难度较大,需要考生具备扎实的数学基础和解决数学问题的能力.主要考查了导数的应用、不等式、数列等基础知识;考查了思维能力、运算能力、分析问题与解决问题的能力和创新意识能力;且又深层次的考查了函数、转换与化归、特殊与一般等数学思维方法。
48天津(2)设,则“”是“为偶函数”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充分必要条件 (D)既不充分也不必要条件
2.A
【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定.
【解析】∵为偶函数,反之不成立,∴“”是“为偶函数”的充分而不必要条件.
49天津(4)函数在区间内的零点个数是
(A)0 (B)1 (C)2 (D)3
4.B
【命题意图】本试题主要考查了函数与方程思想,函数的零点的概念,零点存在定理以及作图与用图的数学能力.
【解析】解法1:因为,,即且函数在内连续不断,故在内的零点个数是1.
解法2:设,,在同一坐标系中作出两函数的图像如图所示:可知B正确.
50天津(14)已知函数的图象与函数的图象恰有两个交点,则实数的取值范围是 .
14.
【命题意图】本试题主要考查了函数的图像及其性质,利用函数图像确定两函数的交点,从而确定参数的取值范围.
【解析】∵函数的图像直线恒过定点,且,,,∴,,,由图像可知.
51天津(20)(本小题满分14分)已知函数的最小值为,其中.
(Ⅰ)求的值;(Ⅱ)若对任意的,有成立,求实数的最小值;
(Ⅲ)证明:.
【参考答案】(1)函数的定义域为
得:时,
(2)设
则在上恒成立(*)
①当时,与(*)矛盾
②当时,符合(*)
得:实数的最小值为
(3)由(2)得:对任意的值恒成立
取:
当时, 得:
当时,
得:
【点评】试题分为三问,题面比较简单,给出的函数比较常规,因此入手对于同学们来说没有难度,第二问中,解含参数的不等式时,要注意题中参数的讨论所有的限制条件,从而做到不重不漏;第三问中,证明不等式,应借助于导数证不等式的方法进行.
52新课标(10) 已知函数;则的图像大致为( )
【解析】选
得:或均有 排除
53新课标(12)设点在曲线上,点在曲线上,则最小值为( )
【解析】选
函数与函数互为反函数,图象关于对称
函数上的点到直线的距离为
设函数
由图象关于对称得:最小值为
54新课标(21)(本小题满分12分)
已知函数满足满足;
(1)求的解析式及单调区间;
(2)若,求的最大值。
【解析】(1)
令得:
得:
在上单调递增
得:的解析式为
且单调递增区间为,单调递减区间为
(2)得
①当时,在上单调递增
时,与矛盾
②当时,
③当时,
得:当时,
令;则
当时,
当时,的最大值为
55浙江9.设a>0,b>0.[来源:21世纪教育网]
A.若,则a>b
B.若,则a<b
C.若,则a>b
D.若,则a<b
【解析】若,必有.构造函数:,则恒成立,故有函数在x>0上单调递增,即a>b成立.其余选项用同样方法排除.
【答案】A
56浙江17.设aR,若x>0时均有[(a-1)x-1]( x 2-ax-1)≥0,则a=______________.
【解析】本题按照一般思路,则可分为一下两种情况:
(A), 无解;
(B), 无解.
因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x>0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图)
我们知道:函数y1=(a-1)x-1,y2=x 2-ax-1都过定点P(0,1).
考查函数y1=(a-1)x-1:令y=0,得M(,0),还可分析得:a>1;
考查函数y2=x 2-ax-1:显然过点M(,0),代入得:,解之得:,舍去,得答案:.
【答案】
57浙江21.(本小题满分14分)已知a>0,bR,函数.
(Ⅰ)证明:当0≤x≤1时,
(ⅰ)函数的最大值为|2a-b|﹢a;
(ⅱ) +|2a-b|﹢a≥0;
(Ⅱ) 若﹣1≤≤1对x[0,1]恒成立,求a+b的取值范围.
【解析】本题主要考察不等式,导数,单调性,线性规划等知识点及综合运用能力。
(Ⅰ) (ⅰ).
当b≤0时,>0在0≤x≤1上恒成立,
此时的最大值为:=|2a-b|﹢a;
当b>0时,在0≤x≤1上的正负性不能判断,
此时的最大值为:
=|2a-b|﹢a;
综上所述:函数在0≤x≤1上的最大值为|2a-b|﹢a;
(ⅱ) 要证+|2a-b|﹢a≥0,即证=﹣≤|2a-b|﹢a.
亦即证在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a,
∵,∴令.
当b≤0时,<0在0≤x≤1上恒成立,
此时的最大值为:=|2a-b|﹢a;
当b<0时,在0≤x≤1上的正负性不能判断,
≤|2a-b|﹢a;
综上所述:函数在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a.
即+|2a-b|﹢a≥0在0≤x≤1上恒成立.
(Ⅱ)由(Ⅰ)知:函数在0≤x≤1上的最大值为|2a-b|﹢a,
且函数在0≤x≤1上的最小值比﹣(|2a-b|﹢a)要大.
∵﹣1≤≤1对x[0,1]恒成立,
∴|2a-b|﹢a≤1.
取b为纵轴,a为横轴.
则可行域为:和,目标函数为z=a+b.
作图如下:
由图易得:当目标函数为z=a+b过P(1,2)时,有.
∴所求a+b的取值范围为:.
58重庆7、已知是定义在R上的偶函数,且以2为周期,则“为[0,1]上的增函数”是“为[3,4]上的减函数”的
(A)既不充分也不必要的条件 (B)充分而不必要的条件
(C)必要而不充分的条件 (D)充要条件
【解析】选
由是定义在R上的偶函数及[0,1]双抗的增函数可知在[-1,0]减函数,又2为周期,
所以【3,4】上的减函数
59重庆8、设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是
(A)函数有极大值和极小值
(B)函数有极大值和极小值
(C)函数有极大值和极小值
(D)函数有极大值和极小值
【解析】选
时,
时,
得:或
函数有极大值和极小值
【答案】(Ⅰ) 见解析;(Ⅱ).
60重庆16、(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)
设其中,曲线在点处的切线垂直于轴.
(Ⅰ) 求的值;
(Ⅱ) 求函数的极值.
16:解:(1)因,故
由于曲线在点处的切线垂直于轴,故该切线斜率为0,即,
从而,解得
(2)由(1)知,
令,解得(因不在定义域内,舍去),
当时,,故在上为减函数;
当时,,故在上为增函数;
故在处取得极小值。
x
O
y
P
A1. (安徽6)设平面与平面相交于直线,直线在平面内,直线在平面内,且
则“”是“”的( )
充分不必要条件 必要不充分条件
充要条件 即不充分不必要条件
【解析】选
① ②如果;则与条件相同
2. (安徽12)某几何体的三视图如图所示,该几何体的表面积是
【解析】表面积是
该几何体是底面是直角梯形,高为的直四棱柱
几何体的表面积是
3. (安徽18)(本小题满分12分)
平面图形如图4所示,其中是矩形,,,
。现将该平面图形分别沿和折叠,使与所在平面都
与平面垂直,再分别连接,得到如图2所示的空间图形,对此空间图形解答
下列问题。
。
(Ⅰ)证明:; (Ⅱ)求的长;
(Ⅲ)求二面角的余弦值。
【解析】(I)取的中点为点,连接
则,面面面
同理:面 得:共面
又面
(Ⅱ)延长到,使 得:
,面面面面
(Ⅲ)是二面角的平面角
在中,
在中,
得:二面角的余弦值为。
4.北京7.某三棱锥的三视图如图所示,该三梭锥的表面积是( )
A. 28+6 B. 30+6 C. 56+ 12 D. 60+12
【解析】从所给的三视图可以得到该几何体为三棱锥,如图所示,图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。本题所求表面积应为三棱锥四个面的面积之和,利用垂直关系和三角形面积公式,可得:,,,,因此该几何体表面积,故选B。
【答案】B
5.北京16.(本小题共14分)
如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(I)求证:A1C⊥平面BCDE;
(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;
(III)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由
解:(1),
平面,
又平面,
又,
平面。
(2)如图建系,则,,,
∴,
设平面法向量为
则 ∴ ∴
∴
又∵
∴
∴,
∴与平面所成角的大小。
(3)设线段上存在点,设点坐标为,则
则,
设平面法向量为,
则 ∴
∴。
假设平面与平面垂直,
则,∴,,,
∵,∴不存在线段上存在点,使平面与平面垂直。
6.福建4一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( )
A.球 B.三棱锥 C.正方体 D.圆柱
考点:空间几何体的三视图。
难度:易。
分析:本题考查的知识点为空间几何体的三视图,直接画出即可。
解答:圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆;
三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形;
正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形;
圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。
7.福建18.(本小题满分13分)
如图,在长方体中,,为中点。
(Ⅰ)求证:;
(Ⅱ)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由。
(Ⅲ)若二面角的大小为,求的长。
考点:立体几何。
难度:中。
分析:
解答:
(Ⅰ)长方体中,
得:面
面
(Ⅱ)取的中点为,中点为,连接
在中,面
此时
(Ⅲ)设,连接,过点作于点,连接
面,
得:是二面角的平面角
在中,
在矩形中,
得:
8.广东6. 某几何体的三视图如图1所示,它的体积为( )
【解析】选 几何体是圆柱与圆锥叠加而成
它的体积为
9.广东18.(本小题满分13分)
如图所示,在四棱锥中,底面为矩形,
平面,点在线段上,平面。
证明:平面;
若,求二面角的正切值;
【解析】(1)平面,面
平面,面
又面
(2)由(1)得:,,
平面是二面角的平面角
在中,
在中,
得:二面角的正切值为
10.湖北4.已知某几何体的三视图如图所示,则该几
何体的体积为
A. B.
C. D.
考点分析:本题考察空间几何体的三视图.
难易度:★
解析:显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为.选B.
11.湖北10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积,求其直径的一个近似公式. 人们还用过一些类似的近似公式. 根据判断,下列近似公式中最精确的一个是
B. C. D.
考点分析:考察球的体积公式以及估算.
难易度:★★
解析:
12.湖北19.(本小题满分12分)
如图1,,,过动点A作,垂足D在线段BC上且异于点B,连接AB,沿将△折起,使(如图2所示).
(Ⅰ)当的长为多少时,三棱锥的体积最大;
(Ⅱ)当三棱锥的体积最大时,设点,分别为棱,的中点,试在
棱上确定一点,使得,并求与平面所成角的大小.
第19题图
19.解:
(Ⅰ)解法1:在如图1所示的△中,设,则.
由,知,△为等腰直角三角形,所以.
由折起前知,折起后(如图2),,,且,
所以平面.又,所以.于是
,(lbylfx)
当且仅当,即时,等号成立,
故当,即时, 三棱锥的体积最大.
解法2:
同解法1,得.
令,由,且,解得.
当时,;当时,.
所以当时,取得最大值.
故当时, 三棱锥的体积最大.
(Ⅱ)解法1:以为原点,建立如图a所示的空间直角坐标系.
由(Ⅰ)知,当三棱锥的体积最大时,,.
于是可得,,,,,,
且.
设,则. 因为等价于,即
,故,.
所以当(即是的靠近点的一个四等分点)时,.
设平面的一个法向量为,由 及,
得 可取.
设与平面所成角的大小为,则由,,可得
,即.
故与平面所成角的大小为
解法2:由(Ⅰ)知,当三棱锥的体积最大时,,.
如图b,取的中点,连结,,,则∥.
由(Ⅰ)知平面,所以平面.
如图c,延长至P点使得,连,,则四边形为正方形,
所以. 取的中点,连结,又为的中点,则∥,
所以. 因为平面,又面,所以.
又,所以面. 又面,所以.
因为当且仅当,而点F是唯一的,所以点是唯一的.
即当(即是的靠近点的一个四等分点),.
连接,,由计算得,
所以△与△是两个共底边的全等的等腰三角形,
如图d所示,取的中点,连接,,
则平面.在平面中,过点作于,
则平面.故是与平面所成的角.
在△中,易得,所以△是正三角形,
故,即与平面所成角的大小为
13.湖南3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是
【答案】D
【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.
【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型
14.湖南18.(本小题满分12分)
如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.[来源%:*中#国教~育出@版网]
(Ⅰ)证明:CD⊥平面PAE;
(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.
【解析】
解法1(Ⅰ如图(1)),连接AC,由AB=4,,
E是CD的中点,所以
所以
而内的两条相交直线,所以CD⊥平面PAE.
(Ⅱ)过点B作
由(Ⅰ)CD⊥平面PAE知,BG⊥平面PAE.于是为直线PB与平面PAE
所成的角,且.
由知,为直线与平面所成的角.
由题意,知
因为所以
由所以四边形是平行四边形,故于是
在中,所以
于是
又梯形的面积为所以四棱锥的体积为
解法2:如图(2),以A为坐标原点,所在直线分别为建立空间直角坐标系.设则相关的各点坐标为:
(Ⅰ)易知因为
所以而是平面内的两条相交直线,所以
(Ⅱ)由题设和(Ⅰ)知,分别是,的法向量,而PB与
所成的角和PB与所成的角相等,所以
由(Ⅰ)知,由故
解得.
又梯形ABCD的面积为,所以四棱锥的体积为
.
【点评】本题考查空间线面垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明即可,第二问算出梯形的面积和棱锥的高,由算得体积,或者建立空间直角坐标系,求得高几体积.
15.江苏7.(2012年江苏省5分)如图,在长方体中,,,则四棱锥的体积为 ▲ cm3.
【答案】6。
【考点】正方形的性质,棱锥的体积。
【解析】∵长方体底面是正方形,∴△中 cm,边上的高是cm(它也是中上的高)。
∴四棱锥的体积为。
16.江苏16.(2012年江苏省14分)如图,在直三棱柱中,,分别是棱上的点(点 不同于点),且为的中点.
求证:(1)平面平面;
(2)直线平面.
【答案】证明:(1)∵是直三棱柱,∴平面。
又∵平面,∴。
又∵平面,∴平面。(lb ylfx)
又∵平面,∴平面平面。
(2)∵,为的中点,∴。
又∵平面,且平面,∴。
又∵平面,,∴平面。
由(1)知,平面,∴∥。
又∵平面平面,∴直线平面
【考点】直线与平面、平面与平面的位置关系。
【解析】(1)要证平面平面,只要证平面上的平面即可。它可由已知是直三棱柱和证得。
(2)要证直线平面,只要证∥平面上的即可。
17江西10.如右图,已知正四棱锥所有棱长都为1,点E是侧棱上一动点,过点垂直于的截面将正四棱锥分成上、下两部分,记截面下面部分的体积为则函数的图像大致为
10.A【解析】本题综合考查了棱锥的体积公式,线面垂直,同时考查了函数的思想,导数法解决几何问题等重要的解题方法.
(定性法)当时,随着的增大,观察图形可知,单调递减,且递减的速度越来越快;当时,随着的增大,观察图形可知,单调递减,且递减的速度越来越慢;再观察各选项中的图象,发现只有A图象符合.故选A.
【点评】对于函数图象的识别问题,若函数的图象对应的解析式不好求时,作为选择题,没必要去求解具体的解析式,不但方法繁琐,而且计算复杂,很容易出现某一步的计算错误而造成前功尽弃;再次,作为选择题也没有太多的时间去给学生解答;因此,使用定性法,不但求解快速,而且准确节约时间.
18江西19.(本题满分12分)
在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是线段BC的中点O。
(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面与平面BB1C1C夹角的余弦值。
19.(本小题满分12分)
解:(1)证明:连接AO,在中,作于点E,因为,得,
因为平面ABC,所以,因为,
得,所以平面,所以,
所以平面,
又,
得
(2)如图所示,分别以所在的直线
为x,y,z轴建立空间直角坐标系,则A(1,0,0), C(0,-2,0), A1(0.0,2),B(0,2,0)
由(1)可知得点E的坐标为,由(1)可知平面的法向量是,设平面的法向量,
由,得,令,得,即
所以
即平面平面与平面BB1C1C夹角的余弦值是。
19辽宁13. 一个几何体的三视图如图所示,则该几何体的表面积为 .
【命题意图】本题主要考查简单几何体的三视图及其体积计算,是简单题.
【命题意图】由三视图知,此几何体为一个长为4,宽为3,高为1的长方体中心,去除一个半径为1的圆柱,所以表面积为
20辽宁16. 已知正三棱锥,点都在半径为的球面上,若两两相互垂直,则球心到截面的距离为 .
【命题意图】本题主要考查球与正三棱锥的切接问题,是难题.
【解析】如图所示,为球心,为截面所在圆的圆心,
设,两两相互垂直,
,所以,,
,解得,所以,
21辽宁18. (本小题满分12分)
如图,直三棱柱,,,点分别为和的中点
(1)证明:;
(2)若二面角为直二面角,求的值
【命题意图】本题主要考查线面平行的判定、二面角的计算,考查空间想象能力、运算求解能力,是容易题.
【解析】(1)连结,由已知
三棱柱为直三棱柱,
所以为中点.又因为为中点
所以,又平面
平面,因此 ……6分
(2)以为坐标原点,分别以直线为轴,轴,轴建立直角坐标系,如图所示
设则,
于是,
所以,设是平面的法向量,
由得,可取
设是平面的法向量,
由得,可取
因为为直二面角,所以,解得……12分
22全国卷大纲版4.已知正四棱柱中,为的中点,则直线 与平面的距离为
A.2 B. C. D.1
答案D
【命题意图】本试题主要考查了正四棱柱的性质的运用,以及点到面的距离的求解。体现了转换与化归的思想的运用,以及线面平行的距离,转化为点到面的距离即可。
【解析】因为底面的边长为2,高为,且连接,得到交点为,连接,,则点到平面的距离等于到平面的距离,过点作,则即为所求,在三角形中,利用等面积法,可得,故选答案D。
23全国卷大纲版16.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为 。
答案
【命题意图】本试题考查了斜棱柱中异面直线的角的求解。用空间向量进行求解即可。
【解析】设该三棱柱的边长为1,依题意有,则
而
24全国卷大纲版18.(本小题满分12分)(注意:在试题卷上作答无效)21世纪教育网
如图,四棱锥中,底面为菱形,底面,,是上的一点,。
(1)证明:平面;
(2)设二面角为,求与平面所成角的大小。
【命题意图】本试题主要是考查了四棱锥中关于线面垂直的证明以及线面角的求解的运用。
从题中的线面垂直以及边长和特殊的菱形入手得到相应的垂直关系和长度,并加以证明和求解。
解:设,以为原点,为轴,为轴建立空间直角坐标系,则设。
(Ⅰ)证明:由得, 所以,,,所以,
。所以,,所以平面;
(Ⅱ) 设平面的法向量为,又,由得,设平面的法向量为,又,由,得,由于二面角为,所以,解得。
所以,平面的法向量为,所以与平面所成角的正弦值为,所以与平面所成角为.
【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题和相似,底面也是特殊的菱形,一个侧面垂直于底面的四棱锥问题,那么创新的地方就是点的位置的选择是一般的三等分点,这样的解决对于学生来说就是比较有点难度的,因此最好使用空间直角坐标系解决该问题为好。
25山东(14)如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为____________。
解析:.
26山东(18)(本小题满分12分)
在如图所示的几何体中,四边形是等腰梯形,
平面,
.
(Ⅰ)求证平面;
(Ⅱ)求二面角的余弦值.
(18)(Ⅰ)证明:因为四边形为等腰梯形,,,
所以 .
又 ,
所以
因此 ,,
又 ,且,平面,
所以 平面.
(Ⅱ)解法一:
由(I)知,所以,又平面,
因此 两两垂直.以为坐标原点,分别以所在的直
线为轴,轴,轴建立空间直角坐标系,不妨设,则,
,,,,
因此 ,.
设平面的一个法向量为,
则 ,,
所以 ,取,
则 .
又平面的法向量可以取为,
所以 ,
所以二面角的余弦值为.
解法二:
取的中点,连结,由于,
所以.
又平面,平面,
所以.
由于,平面,
所以平面,故.
所以为二面角的平面角.
在等腰三角形中,由于,
因此,又,
所以,
故 ,
因此 二面角的余弦值为.
27陕西5. 如图,在空间直角坐标系中有直三棱柱,,则直线与直线夹角的余弦值为( )
A. B.
C. D.
【解析】设,则,,
则,故选A
28陕西18. (本小题满分12分)
(1)如图,证明命题“是平面内的一条直线,是外的一条直线(不垂直于),是直线在上的投影,若,则”为真.
(2)写出上述命题的逆命题,并判断其真假(不需要证明)
【解析】(Ⅰ)证法一 如图,过直线上一点作平面的垂线,设直线,,,的方向向量分别是,,,,则,,共面.根据平面向量基本定理,存在实数,使得,则,因为,所以,
又因为,,所以,故,从而 .
证法二 如图,记,为直线上异于点的任意一点,过作,垂足为,则.,直线,又,平面,,平面,又平面, .
(Ⅱ)逆命题为:是平面内的一条直线,是平面外的一条直线(不垂直于),是直线在上的投影,若,则.逆命题为真命题
29上海8.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为 .
【答案】
【解析】根据该圆锥的底面圆的半径为,母线长为,根据条件得到,解得母线长,所以该圆锥的体积为:.
【点评】本题主要考查空间几何体的体积公式和侧面展开图.审清题意,所求的为体积,不是其他的量,分清图形在展开前后的变化;其次,对空间几何体的体积公式要记准记牢
30上海14.如图,与是四面体中互相垂直的棱,,若,
且,其中、为常数,则四面体的体积的最
大值是 .
【答案】
【解析】据题,也就是说,线段的长度是定值,因为棱与棱互相垂直,当时,此时有最大值,此时最大值为:.
【点评】本题主要考查空间四面体的体积公式、空间中点线面的关系.本题主要考虑根据已知条件构造体积表达式,这是解决问题的关键,本题综合性强,运算量较大.属于中高档试题.
31上海19.如图,在四棱锥P-ABCD中,底面ABCD是矩形,
PA⊥底面ABCD,E是PC的中点.已知AB=2,
AD=2,PA=2.求:
(1)三角形PCD的面积;(6分)
(2)异面直线BC与AE所成的角的大小.(6分)
[解](1)因为PA⊥底面ABCD,所以PA⊥CD,又AD⊥CD,所以CD⊥平面PAD,
从而CD⊥PD. ……3分
因为PD=,CD=2,
所以三角形PCD的面积为. ……6分
(2)[解法一]如图所示,建立空间直角坐标系,
则B(2, 0, 0),C(2, 2,0),E(1, , 1),
,. ……8分
设与的夹角为,则
,=.
由此可知,异面直线BC与AE所成的角的大小是 ……12分
[解法二]取PB中点F,连接EF、AF,则
EF∥BC,从而∠AEF(或其补角)是异面直线
BC与AE所成的角 ……8分
在中,由EF=、AF=、AE=2
知是等腰直角三角形,
所以∠AEF=.
因此异面直线BC与AE所成的角的大小是 ……12分
【点评】本题主要考查直线与直线、直线与平面的位置关系,考查空间想象能力和推理论证能力.综合考查空间中两条异面直线所成的角的求解,同时考查空间几何体的体积公式的运用.本题源于《必修2》立体几何章节复习题,复习时应注重课本,容易出现找错角的情况,要考虑全面,考查空间想象能力,属于中档题.
32四川6、下列命题正确的是( )
A、若两条直线和同一个平面所成的角相等,则这两条直线平行
B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D、若两个平面都垂直于第三个平面,则这两个平面平行
[答案]C
[解析]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.
[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.
33四川0、如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作平面成角的平面与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,则、两点间的球面距离为( )
A、 B、 C、 D、
[答案]A
[解析] 以O为原点,分别以OB、OC、OA所在直线为x、y、z轴,
则A
[点评]本题综合性较强,考查知识点较为全面,题设很自然的把向量、立体几何、三角函数等基础知识结合到了一起.是一道知识点考查较为全面的好题.要做好本题需要有扎实的数学基本功.
34四川14、如图,在正方体中,、分别是、的中点,则异面直线与所成角的大小是____________。
[答案]90
[解析]方法一:连接D1M,易得DN⊥A1D1 ,DN⊥D1M,
所以,DN⊥平面A1MD1,
又A1M平面A1MD1,所以,DN⊥A1D1,故夹角为90
方法二:以D为原点,分别以DA, DC, DD1为x, y, z轴,建立空间直角坐标系D—xyz.设正方体边长为2,则D(0,0,0),N(0,2,1),M(0,1,0)A1(2,0,2)
故,
所以,cos< = 0,故DN⊥D1M,所以夹角为90
[点评]异面直线夹角问题通常可以采用两种途径: 第一,把两条异面直线平移到同一平面中借助三角形处理; 第二,建立空间直角坐标系,利用向量夹角公式解决.
35四川19、(本小题满分12分)
如图,在三棱锥中,,,,平面平面。
(Ⅰ)求直线与平面所成角的大小;
(Ⅱ)求二面角的大小。
[解析](1)连接OC。由已知,所成的角
设AB的中点为D,连接PD、CD.
因为AB=BC=CA,所以CDAB.
因为等边三角形,
不妨设PA=2,则OD=1,OP=,AB=4.
所以CD=2,OC=.
在Rttan.
故直线PC与平面ABC所成的角的大小为arctan…………………6分
(2)过D作DE于E,连接CE.
由已知可得,CD平面PAB.
根据三垂线定理可知,CE⊥PA,
所以,.
由(1)知,DE=
在Rt△CDE中,tan
故……………………………12分
[点评]本小题主要考查线面关系、直线与平面所成的角、二面角等基础知识,考查思维能力、空间想象能力,并考查应用向量知识解决数学问题的能力.
36天津(10)―个几何体的三视图如图所示(单位:),则该几何体的体积为 .
10.
【命题意图】本试题主要考查了简单组合体的三视图的画法与体积的计算以及空间想象能力.
【解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为:=.
37天津
(17)(本小题满分13分)如图,在四棱锥中,丄平面,
丄,丄,,,.
(Ⅰ)证明:丄;
(Ⅱ)求二面角的正弦值;
(Ⅲ)设为棱上的点,满足异面直线与所成的角为,
求的长.
【命题意图】本试题主要考查了
【参考答案】
(1)以为正半轴方向,建立空间直角左边系
则
(2),设平面的法向量
则 取
是平面的法向量
得:二面角的正弦值为
(3)设;则,
即
【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题相似,但底面是非特殊
的四边形,一直线垂直于底面的四棱锥问题,那么创新的地方就是第三问中点E的位置是不确定的,需要学生根据已知条件进行确定,如此说来就有难度,因此最好使用空间直角坐标系解决该问题为好.
38新课标(7)如图,网格纸上小正方形的边长为,粗线画出的
是某几何体的三视图,则此几何体的体积为( )
【解析】选
该几何体是三棱锥,底面是俯视图,高为
此几何体的体积为
39新课标(11)已知三棱锥的所有顶点都在球的求面上,是边长为的正三角形,
为球的直径,且;则此棱锥的体积为( )
【解析】选
的外接圆的半径,点到面的距离
为球的直径点到面的距离为
此棱锥的体积为
另:排除
40新课标(19)(本小题满分12分)
如图,直三棱柱中,,
是棱的中点,
(1)证明:
(2)求二面角的大小。
【解析】(1)在中,
得:
同理:
得:面
(2)面
取的中点,过点作于点,连接
,面面面
得:点与点重合
且是二面角的平面角
设,则,
既二面角的大小为
41浙江10.已知矩形ABCD,AB=1,BC=.将ABD沿矩形的对角线BD所在的直线进行翻着,在翻着过程中,
A.存在某个位置,使得直线AC与直线BD垂直
B.存在某个位置,使得直线AB与直线CD垂直
C.存在某个位置,使得直线AD与直线BC垂直
D.对任意位置,三直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直
【答案】B21世纪教育网
42浙江11.已知某三棱锥的三视图(单位:cm)如图所示,则该三
棱锥的体积等于___________cm3.
【解析】观察三视图知该三棱锥的底面为一直角三角
形,右侧面也是一直角三角形.故体积等于.
【答案】1
43浙江20.(本小题满分15分)如图,在四棱锥P—ABCD中,底面是边长为的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.
(Ⅰ)证明:MN∥平面ABCD;
(Ⅱ) 过点A作AQ⊥PC,垂足为点Q,求二面角A—MN—Q的平面角的余弦值.
【解析】本题主要考察线面平行的证明方法,建系求二面角等知识点。
(Ⅰ)如图连接BD.[来源:21世纪教育网]
∵M,N分别为PB,PD的中点,
∴在PBD中,MN∥BD.
又MN平面ABCD,
∴MN∥平面ABCD;
(Ⅱ)如图建系:
A(0,0,0),P(0,0,),M(,,),
N(,0,),C(,3,0).
设Q(x,y,z),则.
∵,∴.
由,得:. 即:.
对于平面AMN:设其法向量为.
∵.
则. ∴(-
同理对于平面MNQ得其法向量为.
记所求二面角A—MN—Q的平面角大小为,
则.
∴所求二面角A—MN—Q的平面角的余弦值为.
【答案】(Ⅰ)见解析;(Ⅱ).
44重庆9、设四面体的六条棱的长分别为1,1,1,1,和,且长为的棱与长为的棱异面,则的取值范围是
(A) (B) (C) (D)
【解析】选
取长的棱的中点与长为的端点;则
45重庆19、(本小题满分12分(Ⅰ)小问4分(Ⅱ)小问8分)
如图,在直三棱柱 中,AB=4,AC=BC=3,D为AB的中点
(Ⅰ)求点C到平面 的距离;
(Ⅱ)若,求二面角 的平面角的余弦值。
19、解:(1)由,为的中点,得,又,故,所以点到平面的距离为
(2)如图,取为的中点,连结,则,又由(1)知,故,所以为所求的二面角的平面角。
因为在面上的射影,又已知,由三垂线定理的逆定理得,从而都与互余,因此,所以,因此,,即,得。
从而,所以,在中,
俯视图
侧视图
2
正视图
第4题图
4
2
4
2
D
A
B
C
A
C
D
B
图2
图1
M
E
.
·
C
A
D
B
图a
E
M
x
y
z
图b
C
A
D
B
E
F
M
N
图c
B
D
P
C
F
N
E
B
G
M
N
E
H
图d
第19题解答图
N
B
y
O
C
A
E
z
A11
B1
C1
x
A
B
C
D
P
E
x
y
z
A
B
C
D
P
E
F1. 北京1.已知集合A={x∈R|3x+2>0} B={x∈R|(x+1)(x-3)>0} 则A∩B=
A (-,-1)B (-1,-) C (-,3)D (3,+)
【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。因为,利用二次不等式可得或画出数轴易得:.故选D.
【答案】D
3. 北京3.设a,b∈R。“a=0”是“复数a+bi是纯虚数”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
【解析】当时,如果同时等于零,此时是实数,不是纯虚数,因此不是充分条件;而如果已经为纯虚数,由定义实部为零,虚部不为零可以得到,因此想必要条件,故选B。
【答案】B
4.福建 3下列命题中,真命题是( )
A. B.
C.的充要条件是 D.是的充分条件
考点:逻辑。
难度:易。
分析:本题考查的知识点为复逻辑中的充要条件的判定。
解答:A中,。
B中,,。
C中,的充要条件是。
D中,可以得到,当时,不一定可以得到。
5.广东2.设集合;则( )
【解析】选
6.湖北2.命题“,”的否定是
A., B.,
C., D.,
考点分析:本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别.
难易度:★
解析:根据对命题的否定知,是把谓词取否定,然后把结论否定。因此选D
7.湖南1.设集合M={-1,0,1},N={x|x2≤x},则M∩N=
A.{0} B.{0,1} C.{-1,1} D.{-1,0,0}
【答案】B
【解析】 M={-1,0,1} M∩N={0,1}.
【点评】本题考查了集合的基本运算,较简单,易得分.
先求出,再利用交集定义得出M∩N.
8.湖南2.命题“若α=,则tanα=1”的逆否命题是
A.若α≠,则tanα≠1 B. 若α=,则tanα≠1
C. 若tanα≠1,则α≠ D. 若tanα≠1,则α=
【答案】C
【解析】因为“若,则”的逆否命题为“若,则”,所以 “若α=,则tanα=1”的逆否命题是 “若tanα≠1,则α≠”.
【点评】本题考查了“若p,则q”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.
9.江苏1.(2012年江苏省5分)已知集合,,则 ▲ .
【答案】。
【考点】集合的概念和运算。
【分析】由集合的并集意义得。
10.江西1.若集合A={-1,1},B={0,2},则集合{z︱z=x+y,x∈A,y∈B}中的元素的个数为( )
A.5 B.4 C.3 D.2
1.C 【解析】本题考查集合的概念及元素的个数.
容易看出只能取-1,1,3等3个数值.故共有3个元素.
【点评】集合有三种表示方法:列举法,图像法,解析式法.集合有三大特性:确定性,互异性,无序性.本题考查了列举法与互异性.来年需要注意集合的交集等运算,Venn图的考查等.
11.江西5.下列命题中,假命题为( )
A.存在四边相等的四边形不是正方形
B.为实数的充分必要条件是为共轭复数
C.若R,且则至少有一个大于1
D.对于任意都是偶数
5.B【解析】本题以命题的真假为切入点,综合考查了充要条件,复数、特称命题、全称命题、二项式定理等.
(验证法)对于B项,令,显然,但不互为共轭复数,故B为假命题,应选B.
【点评】体现考纲中要求理解命题的概念,理解全称命题,存在命题的意义.来年需要注意充要条件的判断,逻辑连接词“或”、 “且”、 “非”的含义等.
12. 辽宁1. 已知全集,集合,集合,则
A. B. C. D.
【命题意图】本题主要考查集合的补集、交集运算,是容易题.
【解析】,故选B.
13辽宁4. 已知命题,则是
A.
B.
C
D.
【命题意图】本题主要考查全称命题的否定,是容易题.
【解析】全称命题的否定形式为将“”改为“”,后面的加以否定,即将“”改为“”,故选C.
14.全国卷大纲版2.已知集合,则
A.0或 B.0或3 C.1或 D.1或3
答案B
【命题意图】本试题主要考查了集合的概念和集合的并集运算,集合的关系的运用,元素与集合的关系的综合运用,同时考查了分类讨论思想。
【解析】 ,
,故或,解得或或,又根据集合元素的互异性,所以或。
15.山东2 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA)B为
A {1,2,4} B {2,3,4}
C {0,2,4} D {0,2,3,4}
解析:。答案选C。
16.山东3 设a>0 a≠1 ,则“函数f(x)= ax在R上是减函数 ”,是“函数g(x)=(2-a) 在R上是增函数”的
A 充分不必要条件 B 必要不充分条件 21世纪教育网
C 充分必要条件 D 既不充分也不必要条件
解析:p:“函数f(x)= ax在R上是减函数 ”等价于;q:“函数g(x)=(2-a) 在R上是增函数”等价于,即且a≠1,故p是q成立的充分不必要条件. 答案选A。
17.陕西1. 集合,,则( )
A. B. C. D.
【解析】,,则,故选C
18.陕西3. 设,是虚数单位,则“”是“复数为纯虚数”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
【解析】“”则或,“复数为纯虚数”则且,则
“”是“复数为纯虚数”的必要不充分条件,故选B
19.上海2.若集合,,则 .
【答案】
【解析】根据集合A ,解得,由,所以
.
【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决.
20四川 13、设全集,集合,,则_______。
[答案]{a, c, d}
[解析]∵ ; ∴{a,c,d}
[点评]本题难度较低,只要稍加注意就不会出现错误.
21.四川16、记为不超过实数的最大整数,例如,,,。设为正整数,数列满足,,现有下列命题:
①当时,数列的前3项依次为5,3,2;
②对数列都存在正整数,当时总有;
③当时,;
④对某个正整数,若,则。
其中的真命题有____________。(写出所有真命题的编号)
[答案]①③④(lby lfx)
[解析]若,根据
当n=1时,x2=[]=3, 同理x3=, 故①对.
对于②③④可以采用特殊值列举法:
当a=1时,x1=1, x2=1, x3=1, ……xn=1, …… 此时②③④均对.
当a=2时,x1=2, x2=1, x3=1, ……xn=1, …… 此时②③④均对
当a=3时,x1=3, x2=2, x3=1, x4=2……xn=1, ……此时③④均对
综上,真命题有 ①③④ .
[点评]此题难度较大,不容易寻找其解题的切入点,特殊值列举是很有效的解决办法.
22.天津(2)设,则“”是“为偶函数”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充分必要条件 (D)既不充分也不必要条件
2.A
【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定.
【解析】∵为偶函数,反之不成立,∴“”是“为偶函数”的充分而不必要条件.
23天津(11)已知集合,集合,且,则 , .
11.,
【命题意图】本试题主要考查了集合的交集的运算及其运算性质,同时考查绝对值不等式与一元二次不等式的解法以及分类讨论思想.
【解析】∵=,又∵,画数轴可知,.
24新课标(1)已知集合;,则中所含元素
的个数为( )
【解析】选
,,,共10个
25新课标(3)下面是关于复数的四个命题:其中的真命题为( )
的共轭复数为 的虚部为
【解析】选
,,的共轭复数为,的虚部为
26浙江1.设集合A={x|1<x<4},B={x|x 2-2x-3≤0},则A∩(RB)=
A.(1,4) B.(3,4) C.(1,3) D.(1,2)
【解析】A=(1,4),B=[-1,3],则A∩(RB)=(3,4).
【答案】B
27.浙江3.设aR,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
【解析】当a=1时,直线l1:x+2y-1=0与直线l2:x+2y+4=0显然平行;若直线l1与直线l2平行,则有:,解之得:a=1 or a=﹣2.所以为充分不必要条件.
【答案】A
28.重庆7、已知是定义在R上的偶函数,且以2为周期,则“为[0,1]上的增函数”是“为[3,4]上的减函数”的
(A)既不充分也不必要的条件 (B)充分而不必要的条件
(C)必要而不充分的条件 (D)充要条件
【解析】选
由是定义在R上的偶函数及[0,1]双抗的增函数可知在[-1,0]减函数,又2为周期,
所以【3,4】上的减函数
29重庆10、设平面点集,则所表示的平面图形的面积为
(A) (B) (C) (D)
【解析】选 由对称性:
围成的面积与
围成的面积相等 得:所表示的平面图形的面积为
围成的面积既1. 安徽 4.公比为等比数列的各项都是正数,且,
则( )
【解析】选
2. (安徽21)(本小题满分13分)
数列满足:
(I)证明:数列是单调递减数列的充分必要条件是
(II)求的取值范围,使数列是单调递增数列。
【解析】(I)必要条件
当时,数列是单调递减数列
充分条件
数列是单调递减数列
得:数列是单调递减数列的充分必要条件是
(II)由(I)得:
①当时,,不合题意
②当时,
当时,与同号,
由
当时,存在,使与异号
与数列是单调递减数列矛盾
得:当时,数列是单调递增数列
3.北京8.某棵果树前n前的总产量S与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高。m值为( )
A.5 B.7 C.9 D.11
【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C。
【答案】C
4.北京10.已知等差数列为其前n项和。若,,则=_______。
【解析】因为,
所以,。
【答案】,
5.北京20.(本小题共13分)
设是由个实数组成的行列的数表,满足:每个数的绝对值不大于,且所有数的和为零. 记为所有这样的数表组成的集合. 对于,记为的第行各数之和(),为的第列各数之和();记为,,…,,,,…,中的最小值.
(1)对如下数表,求的值;
(2)设数表形如
求的最大值;
(3)给定正整数,对于所有的,求的最大值.
解:(1)由题意可知,,,,
∴
(2)先用反证法证明:
若
则,∴
同理可知,∴
由题目所有数和为
即
∴
与题目条件矛盾
∴.
易知当时,存在
∴的最大值为1
(3)的最大值为.
首先构造满足的:
,
.
经计算知,中每个元素的绝对值都小于1,所有元素之和为0,且
,
,
.
下面证明是最大值. 若不然,则存在一个数表,使得.
由的定义知的每一列两个数之和的绝对值都不小于,而两个绝对值不超过1的数的和,其绝对值不超过2,故的每一列两个数之和的绝对值都在区间中. 由于,故的每一列两个数符号均与列和的符号相同,且绝对值均不小于.
设中有列的列和为正,有列的列和为负,由对称性不妨设,则. 另外,由对称性不妨设的第一行行和为正,第二行行和为负.
考虑的第一行,由前面结论知的第一行有不超过个正数和不少于个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于(即每个负数均不超过). 因此
,
故的第一行行和的绝对值小于,与假设矛盾. 因此的最大值为。
6.福建2等差数列中,,则数列的公差为( )
A.1 B.2 C.3 D.4
考点:等差数列的定义。
难度:易。
分析:本题考查的知识点为复等差数列的通项公式。
解答:。
7.福建14.数列的通项公式,前项和为,则 ___________。【3018】
考点:数列和三角函数的周期性。
难度:中。
分析:本题考查的知识点为三角函数的周期性和数列求和,所以先要找出周期,然后分组计算和。
解答: ,
,
,
,
所以。
即。
8.广东11. 已知递增的等差数列满足,则
【解析】
9.广东19.(本小题满分14分)
设数列的前项和为,满足,且成等差数列。
(1)求的值;(2)求数列的通项公式。
(3)证明:对一切正整数,有
【解析】(1) 相减得:
成等差数列
(2)得对均成立
得:
(3)当时,
当时,
由上式得:对一切正整数,有
10.湖北7.定义在上的函数,如果对于任意给定的等比数列, 仍
是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函
数:
①; ②; ③; ④.
则其中是“保等比数列函数”的的序号为
① ② B.③ ④ C.① ③ D.② ④
考点分析:本题考察等比数列性质及函数计算.
难易度:★
解析:等比数列性质,,①; ②;③;④.选C
11.湖北18.(本小题满分12分)
已知等差数列前三项的和为,前三项的积为.
(Ⅰ)求等差数列的通项公式;
(Ⅱ)若,,成等比数列,求数列的前项和.
18.解:
(Ⅰ)设等差数列的公差为,则,,
由题意得 解得或
所以由等差数列通项公式可得
,或.
故,或.
(Ⅱ)当时,,,分别为,,,不成等比数列;
当时,,,分别为,,,成等比数列,满足条件.
故
记数列的前项和为.
当时,;当时,;
当时,
. 当时,满足此式.
综上,
12湖南19.(本小题满分12分)
已知数列{an}的各项均为正数,记A(n)=a1+a2+……+an,B(n)=a2+a3+……+an+1,C(n)=a3+a4+……+an+2,n=1,2,…… [来︿&源:中教网@~%]
若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{ an }的通项公式.
证明:数列{ an }是公比为q的等比数列的充分必要条件是:对任意,三个数A(n),B(n),C(n)组成公比为q的等比数列.
【解析】
解(1)对任意,三个数是等差数列,所以
即亦即
故数列是首项为1,公差为4的等差数列.于是
(Ⅱ)(1)必要性:若数列是公比为q的等比数列,则对任意,有
由知,均大于0,于是
即==,所以三个数组成公比为的等比数列.
(2)充分性:若对于任意,三个数组成公比为的等比数列,
则
,
于是得即
由有即,从而.
因为,所以,故数列是首项为,公比为的等比数列,
综上所述,数列是公比为的等比数列的充分必要条件是:对任意n∈N﹡,三个数组成公比为的等比数列.
【点评】本题考查等差数列、等比数列的定义、性质及充要条件的证明.第一问由等差数列定义可得;第二问要从充分性、必要性两方面来证明,利用等比数列的定义及性质易得证.
13.江苏6.(2012年江苏省5分)现有10个数,它们能构成一个以1为首项,为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 ▲ .
【答案】。
【考点】等比数列,概率。
【解析】∵以1为首项,为公比的等比数列的10个数为1,-3,9,-27,···其中有5个负数,1个正数1计6个数小于8,
∴从这10个数中随机抽取一个数,它小于8的概率是。
14.江苏20.(2012年江苏省16分)已知各项均为正数的两个数列和满足:,,
(1)设,,求证:数列是等差数列;
(2)设,,且是等比数列,求和的值.
【答案】解:(1)∵,∴。
∴ 。∴ 。
∴数列是以1 为公差的等差数列。
(2)∵,∴。
∴。(﹡)
设等比数列的公比为,由知,下面用反证法证明
若则,∴当时,,与(﹡)矛盾。
若则,∴当时,,与(﹡)矛盾。
∴综上所述,。∴,∴。
又∵,∴是公比是的等比数列。
若,则,于是。
又由即,得。
∴中至少有两项相同,与矛盾。∴。
∴。
∴ 。
【考点】等差数列和等比数列的基本性质,基本不等式,反证法。
【解析】(1)根据题设和,求出,从而证明而得证。
(2)根据基本不等式得到,用反证法证明等比数列的公比。
从而得到的结论,再由知是公比是的等比数列。最后用反证法求出。
15江西 12.设数列{an},{bn}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=___________
12. 35【解析】本题考查等差中项的性质及整体代换的数学思想
(解法一)因为数列都是等差数列,所以数列也是等差数列.
故由等差中项的性质,得,即,解得.
(解法二)设数列的公差分别为,
因为,
所以.所以.
【点评】对于等差数列的计算问题,要注意掌握基本量法这一通法,同时要注意合理使用等差数列的性质进行巧解. 体现考纲中要求理解等差数列的概念.来年需要等差数列的通项公式,前项和,等差中项的性质等.
16.江西16.(本小题满分12分)
已知数列{an}的前n项和,且Sn的最大值为8.
(1)确定常数k,求an;
(2)求数列的前n项和Tn。
16.(本小题满分12分)
解: (1)当时,取最大值,即,故,从而,又,所以
因为,
所以
17辽宁6. 在等差数列中,已知,则该数列前11项和
A.58 B.88 C.143 D.176
【命题意图】本题主要考查等差数列通项公式和前项和公式,是简单题.
【解析】,而,故选B.
18辽宁14.已知等比数列为递增数列,且,则数列的通项公式____________.
【命题意图】本题主要考查等比数列的通项公式及方程思想,是简单题.
【解析】设等比数列的公比为,则由得,,解得,又由知,,所以,因为为递增数列,所以,
19全国卷大纲版5.已知等差数列的前项和为,则数列的前100项和为
A. B. C. D.
答案A
【命题意图】本试题主要考查等差数列的通项公式和前项和的公式的运用,以及裂项求和的综合运用,通过已知中两项,得到公差与首项,得到数列的通项公式,并进一步裂项求和。
【解析】由可得
20全国卷大纲版22(本小题满分12分)(注意:在试卷上作答无效)
函数。定义数列如下:是过两点的直线与轴交点的横坐标。
(1)证明:;
(2)求数列的通项公式。
解:(1)为,故点在函数的图像上,故由所给出的两点,可知,直线斜率一定存在。故有
直线的直线方程为,令,可求得
所以
下面用数学归纳法证明
当时,,满足
假设时,成立,则当时,,
由即也成立
综上可知对任意正整数恒成立。
下面证明
由
由,故有即
综上可知恒成立。
(2)由得到该数列的一个特征方程即,解得或
① ②
两式相除可得,而
故数列是以为首项以为公比的等比数列21世纪教育网
,故。
【命题意图】本试题主要考查了数列的通项公式以及函数与数列相结全的综合运用。先从函数入手,表示直线方程,从而得到交点坐标,再运用数学归纳法进行证明,根据递推公式构造等比数列进而求得数列的通基。
【点评】以函数为背景,引出点的坐标,并通过直线与坐标轴的交点得到数列的递推公式。既考查了直线方程,又考查了函数解析式,以及不等式的证明,试题比较综合,有一定的难度。做这类试题那就是根据已知条件,一步一步的翻译为代数式,化简得到要找的关系式即可。
21山东(20)(本小题满分12分)
在等差数列中,.
(Ⅰ)求数列的通项公式;
(Ⅱ)对任意,将数列中落入区间内的项的个数记为,求数列
的前项和.
(20)解:(Ⅰ)因为是一个等差数列,
所以,即.
所以,数列的公差,
所以,
(Ⅱ)对,若 ,
则 ,因此 ,
故得 (lb ylfx)
于是
22陕西17.(本小题满分12分)
设的公比不为1的等比数列,其前项和为,且成等差数列.
(1)求数列的公比;
(2)证明:对任意,成等差数列.
【解析】(1)设数列的公比为()。
由成等差数列,得,即。
由得,解得,(舍去),所以。
(2)证法一:对任意,
,
所以,对任意,成等差数列。
证法二:对任意,,
,
,
因此,对任意,成等差数列。
23上海 6.有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为,则 .
【答案】
【解析】由正方体的棱长组成以为首项,为公比的等比数列,可知它们的体积则组成了一个以1为首项,为公比的等比数列,因此, .
【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合.
,属于中低档题.
24上海18.设,,在中,正数的个数是( )
A.25 B.50 C.75 D.100
【答案】C
【解析】依据正弦函数的周期性,可以找其中等于零或者小于零的项.
【点评】本题主要考查正弦函数的图象和性质和间接法解题.解决此类问题主要找到规律,从题目出发可以看出来相邻的14项的和为0,这就是规律,考查综合分析问题和解决问题的能力.
25上海23.对于数集,其中,,定义向量集
. 若对于任意,存在,使得,则称X
具有性质P. 例如具有性质P.
(1)若x>2,且,求x的值;(4分)
(2)若X具有性质P,求证:1X,且当xn>1时,x1=1;(6分)
(3)若X具有性质P,且x1=1,x2=q(q为常数),求有穷数列的通
项公式.(8分)
[解](1)选取,Y中与垂直的元素必有形式. ……2分
所以x=2b,从而x=4. ……4分
(2)证明:取.设满足.
由得,所以、异号.
因为-1是X中唯一的负数,所以、中之一为-1,另一为1,
故1X. ……7分
假设,其中,则.
选取,并设满足,即,
则、异号,从而、之中恰有一个为-1.
若=-1,则2,矛盾;
若=-1,则,矛盾.
所以x1=1. ……10分
(3)[解法一]猜测,i=1, 2, …, n. ……12分
记,k=2, 3, …, n.
先证明:若具有性质P,则也具有性质P.
任取,、.当、中出现-1时,显然有满足;
当且时,、≥1.
因为具有性质P,所以有,、,使得,
从而和中有一个是-1,不妨设=-1.
假设且,则.由,得,与
矛盾.所以.从而也具有性质P. ……15分
现用数学归纳法证明:,i=1, 2, …, n.
当n=2时,结论显然成立;
假设n=k时,有性质P,则,i=1, 2, …, k;
当n=k+1时,若有性质P,则
也有性质P,所以.
取,并设满足,即.由此可得s与t中有且只有一个为-1.
若,则1,不可能;
所以,,又,所以.
综上所述,,i=1, 2, …, n. ……18分
[解法二]设,,则等价于.
记,则数集X具有性质P当且仅当数集B关于
原点对称. ……14分
注意到-1是X中的唯一负数,共有n-1个数,
所以也只有n-1个数.
由于,已有n-1个数,对以下三角数阵
……
注意到,所以,从而数列的通项公式为
,k=1, 2, …, n. ……18分
【点评】本题主要考查数集、集合的基本性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义“具有性质”这一概念,考查考生分析探究及推理论证的能力.综合考查集合的基本运算,集合问题一直是近几年的命题重点内容,应引起足够的重视.
26四川 12、设函数,是公差为的等差数列,,则( )
A、 B、 C、 D、
[答案]D
[解析]∵数列{an}是公差为的等差数列,且
∴
∴ 即
得
∴
[点评]本题难度较大,综合性很强.突出考查了等差数列性质和三角函数性质的综合使用,需考生加强知识系统、网络化学习. 另外,隐蔽性较强,需要考生具备一定的观察能力.
27四川16、记为不超过实数的最大整数,例如,,,。设为正整数,数列满足,,现有下列命题:
①当时,数列的前3项依次为5,3,2;
②对数列都存在正整数,当时总有;
③当时,;
④对某个正整数,若,则。
其中的真命题有____________。(写出所有真命题的编号)
[答案]①③④(lby lfx)
[解析]若,根据
当n=1时,x2=[]=3, 同理x3=, 故①对.
对于②③④可以采用特殊值列举法:
当a=1时,x1=1, x2=1, x3=1, ……xn=1, …… 此时②③④均对.
当a=2时,x1=2, x2=1, x3=1, ……xn=1, …… 此时②③④均对
当a=3时,x1=3, x2=2, x3=1, x4=2……xn=1, ……此时③④均对
综上,真命题有 ①③④ .
[点评]此题难度较大,不容易寻找其解题的切入点,特殊值列举是很有效的解决办法.
28四川20、(本小题满分12分) 已知数列的前项和为,且对一切正整数都成立。
(Ⅰ)求,的值;
(Ⅱ)设,数列的前项和为,当为何值时,最大?并求出的最大值。
[解析]取n=1,得 ①
取n=2,得 ②
又②-①,得 ③
(1)若a2=0, 由①知a1=0,
(2)若a2, ④
由①④得:…………………5分
(2)当a1>0时,由(I)知,
当 , (2+)an-1=S2+Sn-1
所以,an=
所以
令
所以,数列{bn}是以为公差,且单调递减的等差数列.
则 b1>b2>b3>…>b7=
当n≥8时,bn≤b8=
所以,n=7时,Tn取得最大值,且Tn的最大值为
T7=…………………………12分
[点评]本小题主要从三个层面对考生进行了考查. 第一,知识层面:考查等差数列、等比数列、对数等基础知识;第二,能力层面:考查思维、运算、分析问题和解决问题的能力;第三,数学思想:考查方程、分类与整合、化归与转化等数学思想.
29天津(18)(本小题满分13分)已知{}是等差数列,其前项和为,{}是等比数列,且=,
,.
(Ⅰ)求数列{}与{}的通项公式;
(Ⅱ)记;证明:.
【命题意图】本试题主要考查了
【参考答案】
设数列的公差为,数列的公比为;
则
得:
(2)
【点评】该试题命制比较直接,没有什么隐含的条件,就是等比与等差数列的综合应用,但方法多样,第二问可以用错位相减法求解证明,也可用数学归纳法证明,给学生思维空间留有余地,符合高考命题选拔性的原则.
30新课标(5)已知为等比数列,,,则( )
【解析】选
,或
31新课标(16)数列满足,则的前项和为
【解析】的前项和为
可证明:
31浙江7.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是
A.若d<0,则数列{S n}有最大项
B.若数列{S n}有最大项,则d<0
C.若数列{S n}是递增数列,则对任意的nN*,均有S n>0
D.若对任意的nN*,均有S n>0,则数列{S n}是递增数列
【解析】选项C显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n}是递增数列,但是S n>0不成立.
【答案】C
32浙江13.设公比为q(q>0)的等比数列{a n}的前n项和为{S n}.若
,,则q=______________.
【解析】将,两个式子全部转化成用,q表示的式子.
即,两式作差得:,即:,解之得:(舍去).
【答案】
33重庆 1.在等差数列中,,则的前5项和=
A.7 B.15 C.20 D.25
【解析】选
34重庆12、 。
【解析】
35重庆21、(本小题满分12分,(I)小问5分,(II)小问7分。)
设数列的前项和满足,其中。
(I)求证:是首项为1的等比数列;
(II)若,求证:,并给出等号成立的充要条件。
(1)证明:由,得,即。
因,故,得,
又由题设条件知,
两式相减得,即,
由,知,因此
综上,对所有成立,从而是首项为1,公比为的等比数列。
当或时,显然,等号成立。
设,且,由(1)知,,,所以要证的不等式化为:
即证:
当时,上面不等式的等号成立。
当时,与,()同为负;
当时, 与,()同为正;
因此当且时,总有 ()()>0,即
,()。
上面不等式对从1到求和得,
由此得
综上,当且时,有,当且仅当或时等号成立。第十部分 解析几何初步
(2012年安徽文) (9)若直线与圆有公共点,则实数取值范围是
(A) [-3 ,-1 ] (B)[ -1 , 3 ]
(C) [ -3 ,1 ] (D)(- ,-3 ] U [ ,+ )
【解析】选
圆的圆心到直线的距离为
则
(2012年山东卷文)(9)圆与圆的位置关系为
(A)内切 (B)相交 (C)外切 (D)相离
(2012年湖北文)5.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为
A.x+y-2=0 B.y-1=0 C.x-y=0 D.x+3y-4=0
(2012年浙江卷理)3.设aR,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
【解析】当a=1时,直线l1:x+2y-1=0与直线l2:x+2y+4=0显然平行;若直线l1与直线l2平行,则有:,解之得:a=1 or a=﹣2.所以为充分不必要条件.
【答案】A
(2012年浙江卷文)4设a∈R ,则“a=1”是“直线l1:ax+2y=0与直线l2 :x+(a+1)y+4=0平行 的
A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件
(2012辽宁卷文)(7)将圆x2+y2 -2x-4y+1=0平分的直线是
(A)x+y-1=0 (B) x+y+3=0 (C)x-y+1=0 (D)x-y+3=0
(2012年陕西卷文)6. 已知圆,过点的直线,则( )
A。与相交 B。 与相切 C。与相离 D. 以上三个选项均有可能
(2012年福建卷文)7.直线x+-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于
A. HYPERLINK "" EMBED Equation.DSMT4 B . C. HYPERLINK "" EMBED Equation.DSMT4 D.1
(2012年广东卷文)8. 在平面直角坐标系中,直线与圆相交于两点,
则弦的长等于( )
【解】选
(2012年江苏卷)12.在平面直角坐标系中,圆C的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是 ▲ .
解析:圆C的圆心为,半径为1;由题意,直线上至少存在一点,以该点为圆心,1为半径的圆与圆C有公共点;故存在,使得成立,即;而即为点C到直线的距离,故,解得,即k的最大值是.
答案:
(2012年浙江卷理)16.定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离.已知曲线C1:y=x 2+a到直线l:y=x的距离等于C2:x 2+(y+4) 2 =2到直线l:y=x的距离,
则实数a=______________.
【解析】C2:x 2+(y+4) 2 =2,圆心(0,—4),圆心到直线l:y=x的距离为:,故曲线C2到直线l:y=x的距离为.
另一方面:曲线C1:y=x 2+a,令,得:,曲线C1:y=x 2+a到直线l:y=x的距离的点为(,),.
【答案】
(2012江西卷文)14.过直线x+y-=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是__________。
【答案】()
【解析】本题主要考查数形结合的思想,设p(x,y),则由已知可得po(0为原点)与切线的夹角为,则|po|=2,由可得.
(2012重庆卷理)对任意的实数k,直线y=kx+1与圆 的位置关系一定是
A. 相离 B.相切 C.相交但直线不过圆心 D.相交且直线过圆心
(2012年重庆卷文)3.设A,B为直线y=x与圆x2+y2=1的两个交点,则|AB|=
A.1 B.
C. D.2
(2012年陕西卷理)4. 已知圆,过点的直线,则( A )
(A)与相交 (B) 与相切 (C)与相离 (D) 以上三个选项均有可能
(2012年北京卷文)(9)直线被圆截得的弦长为__________。
(2012年全国新课标文)5、已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是
(A)(1-,2) (B)(0,2) (C)(-1,2) (D)(0,1+)
(2012年天津卷理)(8)设,,若直线与圆相切,则的取值范围是
(A) (B)
(C) (D)
8.D
【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.
【解析】∵直线与圆相切,∴圆心到直线的距离为,所以,设,
则,解得.1. (安徽11)若满足约束条件:;则的取值范围为
【解析】的取值范围为
约束条件对应边际及内的区域:
则
2. 北京2.设不等式组,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是
(A) (B) (C) (D)
【解析】题目中表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此,故选D。
【答案】D
3.福建9.若直线上存在点满足约束条件,则实数的最大值为( )
A. B.1 C. D.2
考点:线性规划。
难度:中。
分析:本题考查的知识点为含参的线性规划,需要画出可行域的图形,含参的直线要能画出大致图像。
解答:可行域如下:
所以,若直线上存在点满足约束条件,
则,即。
4.广东5. 已知变量满足约束条件,则的最大值为( )
【解析】选 约束条件对应边际及内的区域:
则
5.江苏14.(2012年江苏省5分)已知正数满足:则的取值范围是 ▲ .
【答案】。
【考点】可行域。
【解析】条件可化为:。
设,则题目转化为:
已知满足,求的取值范围。
作出()所在平面区域(如图)。求出的切
线的斜率,设过切点的切线为,
则,要使它最小,须。
∴的最小值在处,为。此时,点在上之间。
当()对应点时, ,
∴的最大值在处,为7。
∴的取值范围为,即的取值范围是。
6.江西8.某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表
年产量/亩 年种植成本/亩 每吨售价
黄瓜 4吨 1.2万元 0.55万元
韭菜 6吨 0.9万元 0.3万元
为使一年的种植总利润(总利润=总销售收入 总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )
A.50,0 B.30,20 C.20,30 D.0,50
8.B 【解析】本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力.设黄瓜和韭菜的种植面积分别为x,y亩,总利润为z万元,则目标函数为.线性约束条件为 即作出不等式组表示的可行域,易求得点.
平移直线,可知当直线经过点,即时,z取得最大值,且(万元).故选B.
【点评】解答线性规划应用题的一般步骤可归纳为:
(1)审题——仔细阅读,明确有哪些限制条件,目标函数是什么?
(2)转化——设元.写出约束条件和目标函数;
(3)求解——关键是明确目标函数所表示的直线与可行域边界直线斜率间的关系;
(4)作答——就应用题提出的问题作出回答.
体现考纲中要求会从实际问题中抽象出二元线性规划.来年需要注意简单的线性规划求最值问题.
7辽宁8. 设变量满足,则的最大值为
A.20 B.35 C.45 D.55
【命题意图】本题主要考查简单线性规划,是中档题.
【解析】作出可行域如图中阴影部分所示,由图知目标函数过点时,的最大值为55,故选D.
8.全国卷大纲版13.若满足约束条件,则的最小值为 。
答案:
【命题意图】本试题考查了线性规划最优解的求解的运用。常规题型,只要正确作图,表示出区域,然后借助于直线平移法得到最值。
【解析】利用不等式组,作出可行域,可知区域表示的为三角形,当目标函数过点时,目标函数最大,当目标函数过点时最小为。]
9山东
解析:作出可行域,直线,将直线平移至点处有最大值,
点处有最小值,即.答案应选A。
10陕西14. 设函数,是由轴和曲线及该曲线在点处的切线所围成的封闭区域,则在上的最大值为 .
【答案】2
【解析】当时,,,∴曲线在点处的切线为
则根据题意可画出可行域D如右图:
目标函数,
当,时,z取得最大值2
11四川9、某公司生产甲、乙两种桶装产品。已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克。每桶甲产品的利润是300元,每桶乙产品的利润是400元。公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克。通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )
A、1800元 B、2400元 C、2800元 D、3100元
[答案]C
[解析]设公司每天生产甲种产品X桶,乙种产品Y桶,公司共可获得 利润为Z元/天,则由已知,得 Z=300X+400Y
且
画可行域如图所示,
目标函数Z=300X+400Y可变形为
Y= 这是随Z变化的一族平行直线
解方程组 即A(4,4)
[点评]解决线性规划题目的常规步骤:一列(列出约束条件)、二画(画出可行域)、三作(作目标函数变形式的平行线)、四求(求出最优解).
1
12新课标(14) 设满足约束条件:;则的取值范围为
【解析】的取值范围为
约束条件对应四边形边际及内的区域:
则
13浙江21.(本小题满分14分)已知a>0,bR,函数.
(Ⅰ)证明:当0≤x≤1时,
(ⅰ)函数的最大值为|2a-b|﹢a;
(ⅱ) +|2a-b|﹢a≥0;
(Ⅱ) 若﹣1≤≤1对x[0,1]恒成立,求a+b的取值范围.
【解析】本题主要考察不等式,导数,单调性,线性规划等知识点及综合运用能力。
(Ⅰ) (ⅰ).
当b≤0时,>0在0≤x≤1上恒成立,
此时的最大值为:=|2a-b|﹢a;
当b>0时,在0≤x≤1上的正负性不能判断,
此时的最大值为:
=|2a-b|﹢a;
综上所述:函数在0≤x≤1上的最大值为|2a-b|﹢a;
(ⅱ) 要证+|2a-b|﹢a≥0,即证=﹣≤|2a-b|﹢a.
亦即证在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a,
∵,∴令.
当b≤0时,<0在0≤x≤1上恒成立,
此时的最大值为:=|2a-b|﹢a;
当b<0时,在0≤x≤1上的正负性不能判断,
≤|2a-b|﹢a;
综上所述:函数在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a.
即+|2a-b|﹢a≥0在0≤x≤1上恒成立.
(Ⅱ)由(Ⅰ)知:函数在0≤x≤1上的最大值为|2a-b|﹢a,
且函数在0≤x≤1上的最小值比﹣(|2a-b|﹢a)要大.
∵﹣1≤≤1对x[0,1]恒成立,
∴|2a-b|﹢a≤1.
取b为纵轴,a为横轴.
则可行域为:和,目标函数为z=a+b.
作图如下:
由图易得:当目标函数为z=a+b过P(1,2)时,有.
∴所求a+b的取值范围为:.
【答案】(Ⅰ) 见解析;(Ⅱ).
14重庆10、设平面点集,则所表示的平面图形的面积为
(A) (B) (C) (D)
【解析】选 由对称性:
围成的面积与
围成的面积相等 得:所表示的平面图形的面积为
围成的面积既1.湖南16.设N=2n(n∈N*,n≥2),将N个数x1,x2,…,xN依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列P1=x1x3…xN-1x2x4…xN,将此操作称为C变换,将P1分成两段,每段个数,并对每段作C变换,得到;当2≤i≤n-2时,将Pi分成2i段,每段个数,并对每段C变换,得到Pi+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.
(1)当N=16时,x7位于P2中的第___个位置;
(2)当N=2n(n≥8)时,x173位于P4中的第___个位置.
【答案】(1)6;(2)
【解析】(1)当N=16时,
,可设为,
,即为,
,即, x7位于P2中的第6个位置,;
(2)方法同(1),归纳推理知x173位于P4中的第个位置.
【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力.
需要在学习中培养自己动脑的习惯,才可顺利解决此类问题.
2.江苏20.(2012年江苏省16分)已知各项均为正数的两个数列和满足:,,
(1)设,,求证:数列是等差数列;
(2)设,,且是等比数列,求和的值.
【答案】解:(1)∵,∴。
∴ 。∴ 。
∴数列是以1 为公差的等差数列。
(2)∵,∴。
∴。(﹡)
设等比数列的公比为,由知,下面用反证法证明
若则,∴当时,,与(﹡)矛盾。
若则,∴当时,,与(﹡)矛盾。
∴综上所述,。∴,∴。
又∵,∴是公比是的等比数列。
若,则,于是。
又由即,得。
∴中至少有两项相同,与矛盾。∴。
∴。
∴ 。
【考点】等差数列和等比数列的基本性质,基本不等式,反证法。
【解析】(1)根据题设和,求出,从而证明而得证。
(2)根据基本不等式得到,用反证法证明等比数列的公比。
从而得到的结论,再由知是公比是的等比数列。最后用反证法求出。
3.江西6.观察下列各式:则( )
A.28 B.76 C.123 D.199
6.C【解析】本题考查归纳推理的思想方法.
观察各等式的右边,它们分别为1,3,4,7,11,…,
发现从第3项开始,每一项就是它的前两项之和,故等式的右边依次为1,3,4,7,11,18,29,47,76,123,…,
故
【点评】归纳推理常常可借助前几项的共性来推出一般性的命题.体现考纲中要求了解归纳推理.来年需要注意类比推理等合情推理.
4.全国卷大纲版22(本小题满分12分)(注意:在试卷上作答无效)
函数。定义数列如下:是过两点的直线与轴交点的横坐标。
(1)证明:;
(2)求数列的通项公式。
解:(1)为,故点在函数的图像上,故由所给出的两点,可知,直线斜率一定存在。故有
直线的直线方程为,令,可求得
所以
下面用数学归纳法证明
当时,,满足
假设时,成立,则当时,,
由即也成立
综上可知对任意正整数恒成立。
下面证明
由
由,故有即
综上可知恒成立。
(2)由得到该数列的一个特征方程即,解得或
① ②
两式相除可得,而
故数列是以为首项以为公比的等比数列21世纪教育网
,故。
【命题意图】本试题主要考查了数列的通项公式以及函数与数列相结全的综合运用。先从函数入手,表示直线方程,从而得到交点坐标,再运用数学归纳法进行证明,根据递推公式构造等比数列进而求得数列的通基。
【点评】以函数为背景,引出点的坐标,并通过直线与坐标轴的交点得到数列的递推公式。既考查了直线方程,又考查了函数解析式,以及不等式的证明,试题比较综合,有一定的难度。做这类试题那就是根据已知条件,一步一步的翻译为代数式,化简得到要找的关系式即可。
5.陕西11. 观察下列不等式
,
,
……
照此规律,第五个不等式为 .
【答案】
【解析】观察不等式的左边发现,第n个不等式的左边=,
右边=,所以第五个不等式为.
6上海23.对于数集,其中,,定义向量集
. 若对于任意,存在,使得,则称X
具有性质P. 例如具有性质P.
(1)若x>2,且,求x的值;(4分)
(2)若X具有性质P,求证:1X,且当xn>1时,x1=1;(6分)
(3)若X具有性质P,且x1=1,x2=q(q为常数),求有穷数列的通
项公式.(8分)
[解](1)选取,Y中与垂直的元素必有形式. ……2分
所以x=2b,从而x=4. ……4分
(2)证明:取.设满足.
由得,所以、异号.
因为-1是X中唯一的负数,所以、中之一为-1,另一为1,
故1X. ……7分
假设,其中,则.
选取,并设满足,即,
则、异号,从而、之中恰有一个为-1.
若=-1,则2,矛盾;
若=-1,则,矛盾.
所以x1=1. ……10分
(3)[解法一]猜测,i=1, 2, …, n. ……12分
记,k=2, 3, …, n.
先证明:若具有性质P,则也具有性质P.
任取,、.当、中出现-1时,显然有满足;
当且时,、≥1.
因为具有性质P,所以有,、,使得,
从而和中有一个是-1,不妨设=-1.
假设且,则.由,得,与
矛盾.所以.从而也具有性质P. ……15分
现用数学归纳法证明:,i=1, 2, …, n.
当n=2时,结论显然成立;
假设n=k时,有性质P,则,i=1, 2, …, k;
当n=k+1时,若有性质P,则
也有性质P,所以.
取,并设满足,即.由此可得s与t中有且只有一个为-1.
若,则1,不可能;
所以,,又,所以.
综上所述,,i=1, 2, …, n. ……18分
[解法二]设,,则等价于.
记,则数集X具有性质P当且仅当数集B关于
原点对称. ……14分
注意到-1是X中的唯一负数,共有n-1个数,
所以也只有n-1个数.
由于,已有n-1个数,对以下三角数阵
……
注意到,所以,从而数列的通项公式为
,k=1, 2, …, n. ……18分
【点评】本题主要考查数集、集合的基本性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义“具有性质”这一概念,考查考生分析探究及推理论证的能力.综合考查集合的基本运算,集合问题一直是近几年的命题重点内容,应引起足够的重视.
7四川16、记为不超过实数的最大整数,例如,,,。设为正整数,数列满足,,现有下列命题:
①当时,数列的前3项依次为5,3,2;
②对数列都存在正整数,当时总有;
③当时,;
④对某个正整数,若,则。
其中的真命题有____________。(写出所有真命题的编号)
[答案]①③④(lby lfx)
[解析]若,根据
当n=1时,x2=[]=3, 同理x3=, 故①对.
对于②③④可以采用特殊值列举法:
当a=1时,x1=1, x2=1, x3=1, ……xn=1, …… 此时②③④均对.
当a=2时,x1=2, x2=1, x3=1, ……xn=1, …… 此时②③④均对
当a=3时,x1=3, x2=2, x3=1, x4=2……xn=1, ……此时③④均对
综上,真命题有 ①③④ .
[点评]此题难度较大,不容易寻找其解题的切入点,特殊值列举是很有效的解决办法.
8重庆重庆21、(本小题满分12分,(I)小问5分,(II)小问7分。)
设数列的前项和满足,其中。
(I)求证:是首项为1的等比数列;
(II)若,求证:,并给出等号成立的充要条件。
(1)证明:由,得,即。
因,故,得,
又由题设条件知,
两式相减得,即,
由,知,因此
综上,对所有成立,从而是首项为1,公比为的等比数列。
当或时,显然,等号成立。
设,且,由(1)知,,,所以要证的不等式化为:
即证:
当时,上面不等式的等号成立。
当时,与,()同为负;
当时, 与,()同为正;
因此当且时,总有 ()()>0,即
,()。
上面不等式对从1到求和得,
由此得
综上,当且时,有,当且仅当或时等号成立。1. (安徽7)的展开式的常数项是( )
【解析】选
第一个因式取,第二个因式取 得:
第一个因式取,第二个因式取得: 展开式的常数项是
2. (安徽10)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换
的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到份纪念品
的同学人数为( )
或 或 或 或
【解析】选
①设仅有甲与乙,丙没交换纪念品,则收到份纪念品的同学人数为人
②设仅有甲与乙,丙与丁没交换纪念品,则收到份纪念品的同学人数为人
3.北京6.从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )
A. 24 B. 18 C. 12 D. 6
【解析】由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇。如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共12种;如果是第二种情况偶奇奇,分析同理:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共12+6=18种情况。
【答案】B
3.福建11.的展开式中的系数等于8,则实数_________。【2】
考点:二项式定理。
难度:易。
分析:本题考查的知识点为二项式定理的展开式,直接应用即可。
解答:中含的一项为,令,则,即。
4.广东10. 的展开式中的系数为______。(用数字作答)
【解析】系数为______
的展开式中第项为
令得:的系数为
5.湖北5.设,且,若能被
13整除,则
A.0 B.1
C.11 D.12
考点分析:本题考察二项展开式的系数.
难易度:★
解析:由于
51=52-1,,
又由于13|52,所以只需13|1+a,0≤a<13,所以a=12选D.
6.湖北13.回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则
(Ⅰ)4位回文数有 个;
(Ⅱ)位回文数有 个.
考点分析:本题考查排列、组合的应用.
难易度:★★
解析:(Ⅰ)4位回文数只用排列前面两位数字,后面数字就可以确定,但是第一位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4位回文数有种。
答案:90
(Ⅱ)法一、由上面多组数据研究发现,2n+1位回文数和2n+2位回文数的个数相同,所以可以算出2n+2位回文数的个数。2n+2位回文数只用看前n+1位的排列情况,第一位不能为0有9种情况,后面n项每项有10种情况,所以个数为.
法二、可以看出2位数有9个回文数,3位数90个回文数。计算四位数的回文数是可以看出在2位数的中间添加成对的“00,11,22,……99”,因此四位数的回文数有90个按此规律推导,而当奇数位时,可以看成在偶数位的最中间添加0~9这十个数,因此,则答案为.
7.江苏23.(2012年江苏省10分)设集合,.记为同时满足下列条件的集合的个数:
①;②若,则;③若,则。
(1)求;
(2)求的解析式(用表示).
【答案】解:(1)当时,符合条件的集合为:,
∴ =4。
( 2 )任取偶数,将除以2 ,若商仍为偶数.再除以2 ,··· 经过次以后.商必为奇数.此时记商为。于是,其中为奇数。
由条件知.若则为偶数;若,则为奇数。
于是是否属于,由是否属于确定。
设是中所有奇数的集合.因此等于的子集个数。
当为偶数〔 或奇数)时,中奇数的个数是()。
∴。
【考点】集合的概念和运算,计数原理。
【解析】(1)找出时,符合条件的集合个数即可。
(2)由题设,根据计数原理进行求解。
8辽宁5. 一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为
A. B. C. D.
【命题意图】本题主要考查相邻的排列问题,是简单题.
【命题意图】每家3口人坐在一起,捆绑在一起,共3个,又3家3个整体继续排列有种方法,总共有,故选C.
9.全国卷大纲版11.将字母排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有
A.12种 B.18种 C.24种 D.36种
答案A
【命题意图】本试题考查了排列组合的用用。
【解析】利用分步计数原理,先填写最左上角的数,有3种,再填写右上角的数为2种,在填写第二行第一列的数有2种,一共有。[来源:21世纪教育网]
10全国卷大纲版15.若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为 。
答案
【命题意图】本试题主要考查了二项式定理中通项公式的运用。利用二项式系数相等,确定了的值,然后进一步借助于通项公式,分析项的系数。
【解析】根据已知条件可知,
所以的展开式的通项为,令
所以所求系数为。
11.全国卷大纲版12.正方形的边长为1,点在边上,点在边上,,动点从出发沿直线向运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角。当点第一次碰到时,与正方形的边碰撞的次数为
A.16 B.14 C.12 D.10
答案B
【命题意图】本试题主要考查了反射原理与三角形相似知识的运用。通过相似三角形,来确定反射后的点的落的位置,结合图像分析反射的次数即可。
【解析】解:结合已知中的点E,F的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA点时,需要碰撞14次即可。