2020—2021学年华东师大版数学八年级上册第11章 数的开方同步习题 (word解析版)

文档属性

名称 2020—2021学年华东师大版数学八年级上册第11章 数的开方同步习题 (word解析版)
格式 doc
文件大小 1.4MB
资源类型 教案
版本资源 华东师大版
科目 数学
更新时间 2021-09-04 18:05:27

图片预览

文档简介

《第11章
数的开方》同步习题2020-2021年数学华东师大新版八(上)
一.选择题(共10小题)
1.已知,则的平方根是  
A.
B.
C.
D.
2.在下列结论中,正确的是  
A.
B.的算术平方根是
C.一定没有平方根
D.的平方根是
3.已知,那么的值为  
A.
B.1
C.
D.
4.如果,,那么约等于  
A.28.72
B.0.2872
C.13.33
D.0.1333
5.如图,某计算器中有、、三个按键,以下是这三个按键的功能.
①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;
③:将荧幕显示的数变成它的平方.
小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.
若一开始输入的数据为10,那么第2018步之后,显示的结果是  
A.
B.100
C.0.01
D.0.1
6.下列各数中,无理数是  
A.0
B.
C.
D.
7.在,,0,中,有理数有  个
A.4
B.3
C.2
D.1
8.设,,为不为零的实数,那么的不同的取值共有  
A.6种
B.5种
C.4种
D.3种
9.如图,数轴上有,,,四点,则这四点中所表示的数最接近的是  
A.点
B.点
C.点
D.点
10.已知,,表示取三个数中最小的那个数例如:当时,,,,当时,则的值为  
A.
B.
C.
D.
二.填空题(共10小题)
11.的平方根是 
 .
12.0的算术平方根为  .
13.若,则的值为 
 .
14.方程的解是 
 .
15.用计算器探索:已知按一定规律排列的一组数:1,,,,,、如果从中选出若干个数,使它们的和大于3,那么至少需要选 
 个数.
16.写出一个比4大的无理数为  .
17.我们规定:相等的实数看作同一个实数.有下列六种说法:
①数轴上有无数多个表示无理数的点;
②带根号的数不一定是无理数;
③每个有理数都可以用数轴上唯一的点来表示;
④数轴上每一个点都表示唯一一个实数;
⑤没有最大的负实数,但有最小的正实数;
⑥没有最大的正整数,但有最小的正整数.
其中说法错误的有 
 (注填写出所有错误说法的编号)
18.计算: 
 .
19.实数、在数轴上的位置如图所示,则化简的结果为  .
20.比较大小:  3(填:“”或“”或“”
三.解答题(共10小题)
21.已知的平方根是,立方根,是的整数部分,求的平方根.
22.已知的平方根是,的算术平方根是4,求的值.
23.已知、、满足,求的值.
24.已知的平方根是,的算术平方根是4,求的立方根.
25.已知实数,满足关系式.
(1)求,的值;
(2)判断是有理数还是无理数?并说明理由.
26.我们把任意形如:的五位自然数(其中,,称之为对称数,例如:在自然数12321中,,所以12321就是一个对称数.并规定:能被自然数整除的最大的对称数数记为,能被自然数整除的最小的对称数记为.
(1)写出1个对称数  ;
(2)求(2)和(4)的值.
27.如图在数轴上所对应的数为.
(1)点在点右边距点4个单位长度,求点所对应的数;
(2)在(1)的条件下,点以每秒2个单位长度沿数轴向左运动,点以每秒2个单位长度沿数轴向右运动,当点运动到所在的点处时,求,两点间距离.
(3)在(2)的条件下,现点静止不动,点沿数轴向左运动时,经过多长时间,两点相距4个单位长度.
28.把表示下列各数的点画在数轴上,再按从小到大的顺序,用“”号把这些数连接起来:
3,,,0,,.
29.阅读下列材料:
,即,的整数部分为2,小数部分为.
请根据材料的提示,进行解答.
已知的小数部分为,的小数部分为,求.
30.计算:
参考答案
一.选择题(共10小题)
1.解:根据题意得,,,
解得,,
所以,,

的平方根是.
故选:.
2.解:,故错误;
.的算术平方根是,故错误;
.,当时,平方根为0,故错误;
的平方根为,正确.
故选:.
3.解:由题意得,,,
解得,,
所以,.
故选:.
4.解:,

故选:.
5.解:根据题意得:,,;
,,;

按了第2018下后荧幕显示的数是0.01.
故选:.
6.解:、是整数,是有理数,故选项错误;
、是无理数,选项正确;
、是分数,是有理数,故选项错误;
、是分数,是有理数,故选项错误.
故选:.
7.解:有理数包括整数、分数、有限小数和有限循环小数,
是有限小数,是有理数,
是分数,是有理数,
0是整数,是有理数,
是无理数.
故选:.
8.解:①当,,时,原式;
②当,,时,原式;
③当,,时,原式;
④当,,时,原式;
⑤当,,时,原式;
⑥当,,时,原式;
⑦当,,时,原式;
⑧当,,时,原式.
的不同的取值共有4种.
故选:.
9.解:因为,
所以.
所以.
所以,这四点中所表示的数最接近的是点.
故选:.
10.解:当时,,,不合题意;
当时,,当时,,不合题意;当时,,,符合题意;
当时,,,不合题意,
故选:.
二.填空题(共10小题)
11.解:,25的平方根是.
故答案为:.
12.解:0的算术平方根为0.
故答案为:0.
13.解:因为,
故,,
解得,,
又.
故答案为:.
14.解:
方程整理得:,
开立方得:.
故答案为:.
15.解:左边第一个数是1,
第二个是,
第三个数是,
第四个数是,
第五个数是,
第六个数是,
所以可以把这些数加起来,得出至少要5个数和才大于3.
故答案为:5.
16.解:,
故答案为:(答案不唯一).
17.解:①数轴上有无数多个表示无理数的点是正确的;
②带根号的数不一定是无理数是正确的,如;
③每个有理数都可以用数轴上唯一的点来表示是正确的;
④数轴上每一个点都表示唯一一个实数是正确的;
⑤没有最大的负实数,也没有最小的正实数,原来的说法错误;
⑥没有最大的正整数,有最小的正整数,原来的说法正确.
故答案为:⑤.
18.解:,
故答案为:.
19.解:由数轴可得:,
则,

故答案为:.
20.解:,

故答案为:.
三.解答题(共10小题)
21.解:根据题意,可得,;
故,;
又有,
可得;
则.
则80的平方根为.
22.解:的平方根是,


的算术平方根是4,




23.解:,
又,,,



24.解:的平方根是

解得,,
的算术平方根是
4,,


解得,,

的立方根是2.
25.解:(1)由题意,得,
解得:;
(2)当,时,,是无理数.
当,时,,是有理数.
26.解:(1)在自然数23532中,,所以23532就是一个对称数,
故答案为:23532(答案不唯一);
(2)当,,时能被自然数整除的最大对称数且能被2整除,
(2),
当,,时能被自然数整除的最小对称数,且21312能被4整除,
(4).
27.解:(1).
故点所对应的数为2;
(2)(秒,
(个单位长度).
故,两点间距离是12个单位长度.
(3)运动后的点在点右边4个单位长度,
设经过秒长时间,两点相距4个单位长度,依题意有

解得;
运动后的点在点左边4个单位长度,
设经过秒长时间,两点相距4个单位长度,依题意有

解得.
故经过4秒或8秒,,两点相距4个单位长度.
28.解:,,
用数轴表示为:

它们的大小关系为.
29.解:的小数部分为,的小数部分为,
,,

30.解: