五年级上册教案
第六单元
多边形的面积
第4课时
梯形的面积
教学内容:
教材第62~63页。
教学目标:
1、在实际情境中,认识计算梯形面积的必要性。
2、在自主探索活动中,经历推导梯形面积公式的过程。
3、能运用梯形面积的计算公式,解决相应的实际问题。
教学重难点:
重点:学生能运用“转化”的思想推导梯形面积公式,并会应用。
难点:运用多种方法推导出梯形的面积公式。
教学过程:
一、情景导入
师:平行四边形、三角形的面积计算,我们都是把它们分别转化成我们已经学过的图形来进行研究的面积计算公式的。老师出示梯形问:“你会算这个图形的面积吗?(标着数据的梯形),今天,我们就用同样的方法来研究梯形的面积。
师板书:梯形的面积
二、探索新知。
1、让我们带着问题来自学教材P62页,课件出示。
(1)怎样把梯形转化成我们学过的图形?要动手试试
。?
(2)转化后的图形与我们学过的图形有什么关系?
(3)怎样推导出梯形的面积公式?
2、学生独立自学
通过刚才的自学,相信大家一定有了一定的收获,和你的小组交流交流,交流之前,老师要提出这样三点建议:(1)带着这三个问题,按照“转化—找联系—推导公式”的思路来研究;(2)把你的方法与小组成员进行交流,共同验证;(3)选择合适的方法交流汇报。我们比一比,看哪个小组想到的方法多,动作快。
3、合作互助
学生小组讨论,动手操作,教师巡视参与,了解情况。
在操作实验中,学生的思维水平不同,选择的学具不同,可能会出现解决问题的策略,有分割的方法,也有拼摆的方法;有转化为平行四边形、长方形,正方形进行推导的,也有转化为三角形进行推导的。教师要留给学生比较充分的操作和交流的时间和空间,同时要及时进行点拨和引导。
4、集疑解难。
师:同学们已经用不同的方法把梯形转化成了多种图形,并推导出了梯形面积的计算公式,真是了不起!现在让我们共同来欣赏每个小组的成果。
有意识地按学生的认知规律一一展示。
(1)展示“拼组”的方法。
学生一边展示拼的过程,一边介绍方法步骤。
方法一:梯形面积公式的推导方法与三角形面积公式的推导方法相同,运用“拼”的方法,选择两个形状相同、大小相等(完全一样)的梯形可以拼成一个平行四边形,每个梯形的面积就是所拼成的平行四边形面积的一半。梯形上底与下底的和等于拼成的平行四边形的底,梯形的高等于平行四边形的高,由此得出:
梯形的面积=平行四边形的面积÷2
=底×高÷2
=(上底+下底)×高÷2
课件演示变化过程。
师:这个方法很好!老师还发现有的同学拼成的是长方形,让我们来看看他们又是怎么拼的?
(2)展示“割补”的方法。
①刚才老师发现有的同学只用一个梯形就完成了任务,我们来看看他们的成果吧!
把一个梯形从两腰的中点向下作垂线,分割出两个直角三角形,再拼成一个长方形。
师:以上的方法不错,非常巧妙很独特!
师:现在请同学看屏幕老师还发现有的同学也只用一个梯形就完成了任务,但方法又与上面的不同,现在请他们展示一下。
②把一个梯形剪成两个梯形再拼成一个平行四边形。
学情预设:通过实际操作,将梯形对折、使上、下底重合,沿折线将梯形剪开,就可以拼成平行四边形(如下图)。拼成的平行四边形的底就是梯形的(上底+下底,高是梯形高的一半。平行四边形的面积就是梯形的面积,所以:
师:同学们能够设法将新问题转化成已学过的问题来解决,这本身就是一种了不起的创造。善于观察,勇于实践,才能给大家带来如此多的发现。在这些方法中,你最喜欢哪一种?能说说喜欢的理由吗?(教师大屏幕呈现学生喜欢的方法)
5、集疑解难,提高认识
(1)整理公式。
师:同学们真爱动脑筋,想出了这么多的方法,老师非常欣赏你们的创新能力。这些方法虽然操作过程不同,但是同学们一定感觉到它们之间是有共同点的,谁来说一说共同点是什么呢?
学情预设:这个共同点就是用“转化”的方法推导出梯形的面积计算公式为:梯形的面积=(上底+下底)×高÷2
师:请同学们把我们用“转化”的方法推导出梯形的面积计算公式读一读。
(2)自学字母公式。
师:请同学们把书翻开P62,自学书中的内容。
学情预设:用s表示梯形的面积、用a表示梯形的上底、用b表示梯形的下底,h表示梯形的高,s=(a+b)×h÷2。
师:同学们刚才看书自学到什么呢?
学情预设:通过自学明白用s表示梯形的面积、用a表示梯形的上底、用b表示梯形的下底,h表示梯形的高,用字母表示梯形的面积计算公式s=(a+b)×h÷2。
三、巩固训练。
(一)基本练习:
(1)课件出示课本练一练第1题:一个水渠的横截面,求它的面积。(自由计算)
(二)解决问题:师:梯形的面积很广泛,在很多物体中经常会看到梯形,下面我们就来解决一些日常生活中的问题。
(1)同学们,老师想在班上做一个梯形的展示栏,上底80厘米,下底120厘米,高70厘米,做这样一个展示栏要用多大的卡纸呢?(同桌合作)
四、课堂总结
同学们,这节课大家在探索的过程中发挥了自己的聪明才智,创造出了多种推导梯形面积计算公式的方法,而且能够用所学的知识解决生活中的问题,下面我们来做个小游戏好不好?比如我就是今天的小客人孙悟空,我来采访你一下好吗?
板书设计:
?板书设计:
梯形的面积
梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
教学反思:
梯形的面积是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。本课通过复习—自学-合作探究—展示、交流—引导学生自己总结公式—应用梯形面积的计算公式解决实际问题—构建知识体系完成教学目标。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。由于学生已经经历了平行四边形和三角形的面积计算公式的推导过程,他们完全有能力利用的所学的方法进行梯形的面积计算公式的推导;因此,大胆地让学生自己完成这一探索过程。对于个别学困生,我则通过参与他们的讨论,引导他们自己去发现问题,解决问题。提供给学生几种不同形状的梯形去探究,目的是让学生经历从特殊到一般的归纳过程。有了操作和讨论作铺垫,公式的推导也就水到渠成了,所以,让他们自己归纳公式。在“操作、观察、分析、讨论、概括、归纳”这一系列的数学活动中,学生亲历了一个知识再创造的过程,体验到成功的喜悦。
尊重学生的个性发展,允许学生任意选择不同的梯形,或拼摆、或割补成已学图形,让学生自己在操作的过程中去观察、探索、发现、领悟转化的数学思想,获取数学知识。设计了一系列的探究活动、让学生在想、说、拼、议、评等过程中复习旧知,学习新知。这些都有利于拓宽学生的思维空间,提高学生的动手操作能力和知识迁移能力。