人教版数学九年级上册同步专题四
《二次函数图象性质》强化练习卷
一、选择题
1.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的函数表达式不可能是(
)
A.y=x2-1
B.y=(x+3)2-4
C.y=(x+2)2
D.y=(x+4)2+1
2.将二次函数y=-(x-k)2+k+1的图象向右平移1个单位,再向上平移2个单位后,顶点在直线y=2x+1上,则k的值为(
).
A.2
B.1
C.0
D.-1
3.边长为1的正方形OABC的顶点A在
x轴正半轴上,点C在y轴正半轴上,将正方形OABC绕顶点O顺时针旋转75°,如图所示,使点B恰好落在函数y=ax2(a<0)的图象上,则a的值为(
).
A.-
B.-1
C.-
D.-
4.矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使纸上的点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使纸上的点与点C重合,则此时抛物线的函数表达式变为( )
A.y=x2+8x+14 B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3
5.如图,把抛物线y=x2沿直线y=x平移个单位后,其顶点在直线上的A处,则平移后抛物线的解析式是( )
A.y=(x+1)2-1
B.y=(x+1)2+1
C.y=(x-1)2+1
D.y=(x-1)2-1
6.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是(
)
7.已知二次函数y=2x2-9x-34,当自变量x取两个不同的值x1,x2时,函数值相等,则当自变量x取x1+x2时的函数值应当与(
)时的函数值相等.
A.x=1
B.x=0
C.x=
D.x=
8.已知二次函数y=ax2-bx-2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a-b为整数时,ab的值为(
)
A.或1
B.或1
C.或
D.或
二、填空题
9.小颖想用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象,取自变量x的5个值,分别计算出对应的y值(如下表).由于粗心,小颖算错了其中的一个y值,请你指出这个算错的y值所对应的x=
.
10.二次函数y=x2的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2017在y轴的正半轴上,点B1,B2,B3,…,B2017在二次函数y=x2位于第一象限的图象上.若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2016B2017A2017都为正三角形,则△A2026B2027A2027的边长为
.
11.如图,在平面直角坐标系中,有四条直线x=1,x=2,y=1,y=2围成的正方形ABCD.若抛物线y=ax2与正方形ABCD有公共点,则该抛物线的二次项系数a的取值范围为
.
12.抛物线y=-x2+x+2与y轴交于点A,顶点为B.点P是x轴上的一个动点,
当点P的坐标是 时,|PA-PB|取得最小值.?
13.若A(x1,y1)、B(x2,y2)是二次函数y=-(x+1)2-2图象上不同的两点,且x1>x2>-1,
记m=(x1-x2)(y1-y2),则m 0.(填“>”或“<”)?
14.如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=0.5(x-3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.
下列结论:
①两条抛物线的对称轴距离为5;
②x=0时,y2=5;
③当x>3时,y1-y2>0;
④y轴是线段BC的中垂线.
其中正确结论是 (填写正确结论的序号).?
三、解答题
15.如果二次函数的二次项系数为1,那么此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].
(1)若一个二次函数的特征数为[-2,1],求此函数图象的顶点坐标.
(2)探究下列问题:
①若一个二次函数的特征数为[4,-1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.
②若一个二次函数的特征数为[2,3],则此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?
16.如图,已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).
(1)求抛物线的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.
17.设二次函数y1,y2的图象的顶点坐标分别为(a,b),(c,d).若a=-2c,b=-2d,且开口方向相同,则称y1是y2的“反倍顶二次函数”.
(1)请写出二次函数y=x2-x+1的一个“反倍顶二次函数”;
(2)已知关于x的二次函数y1=x2+nx和二次函数y2=2x2-nx+1.若函数y1恰是y2的“反倍顶二次函数”,求n的值.
18.如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上.
(1)求抛物线的解析式;
(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.
19.如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.
(1)当抛物线F经过点C时,求它的表达式;
(2)设点P的纵坐标为yP,求yP的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;
(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.
20.已知抛物线y=(x-m)2-(x-m),其中m是常数.
(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点.
(2)若该抛物线的对称轴为直线x=.
①求该抛物线的函数表达式.
②把该抛物线沿y轴向上平移多少个单位后,得到的抛物线与x轴只有一个公共点?
参考答案
1.答案为:B.
2.答案为:C.
3.答案为:D.
4.答案为:A.
5.答案为:C
6.答案为:D
7.答案为:B.
8.答案为:A.
9.答案为:2.
10.答案为:2027.
11.答案为:≤a≤2.
12.答案为:(,0)
13.答案为:<
14.答案为:①③④.
15.解:(1)由题意得y=x2-2x+1=(x-1)2,
∴此函数图象的顶点坐标为(1,0).
(2)①由题意得y=x2+4x-1=(x+2)2-5,
∴将此函数的图象先向右平移1个单位,再向上平移1个单位后得
y=(x+2-1)2-5+1=(x+1)2-4=x2+2x-3.
∴图象对应的函数的特征数为
[2,-3].
②∵原函数的特征数为
[2,3],
∴该函数表达式为y=x2+2x+3=(x+1)2+2.
∵平移后图象对应的函数的特征数为[3,4],
∴该函数表达式为y=x2+3x+4=(x+)2+
.
∴原函数的图象应向左平移个单位,再向下平移个单位.
16.解:(1)设抛物线解析式为y=a(x-1)(x-3).
∵抛物线过点C(0,-3),
∴-3=a(-1)×(-3).
解得a=-1.
∴y=-(x-1)(x-3)=-x2+4x-3.
∵y=-x2+4x-3=-(x-2)2+1,
∴顶点坐标为(2,1).
(2)答案不唯一,如:先向左平移2个单位长度,再向下平移1个单位长度,得到的抛物线的解析式为y=-x2,平移后抛物线的顶点为(0,0)落在直线y=-x上.
17.解:(1)∵y2=x2-x+1=(x-)2+,顶点坐标为(,),
∴y1的顶点坐标为(-1,-).
又∵开口方向相同,
∴二次函数y=x2-x+1的一个“反倍顶二次函数”可以是y1=(x+1)2-.
(2)∵y1=x2+nx=(x+)2-,y2=2x2-nx+1=2(x-)2-,
由题意,得-=(-2)×(-),解得n=±2.
18.解:(1)∵OM=ON=4,
∴M点坐标为(4,0),N点坐标为(0,4),
设抛物线解析式为y=a(x﹣4)2,
把N(0,4)代入得16a=4,解得a=,
所以抛物线的解析式为y=(x﹣4)2=x2﹣2x+4;
(2)∵点A的横坐标为t,∴DM=t﹣4,
∴CD=2DM=2(t﹣4)=2t﹣8,
把x=t代入y=x2﹣2x+4得y=t2﹣2t+4,
∴AD=t2﹣2t+4,
∴l=2(AD+CD)=2(t2﹣2t+4+2t﹣8)=t2﹣8(t>4).
19.解:(1)∵抛物线F经过点C(﹣1,﹣2),
∴﹣2=(﹣1)2﹣2×m×(﹣1)+m2﹣2,
解得,m=﹣1,
∴抛物线F的表达式是:y=x2+2x﹣1;
(2)当x=﹣2时,yp=4+4m+m2﹣2=(m+2)2﹣2,
∴当m=﹣2时,yp取得最小值,最小值是﹣2,
此时抛物线F的表达式是:y=x2+4x+2=(x+2)2﹣2,
∴当x≤﹣2时,y随x的增大而减小,
∵x1<x2≤﹣2,
∴y1>y2;
(3)m的取值范围是﹣2≤m≤0或2≤m≤4,
理由:∵抛物线F与线段AB有公共点,点A(0,2),B(2,2),
∴或或,
解得,﹣2≤m≤0或2≤m≤4.
20.解:(1)y=(x-m)2-(x-m)=x2-(2m+1)x+m2+m,
∵Δ=(2m+1)2-4(m2+m)=1>0,
∴不论m为何值,该抛物线与x轴一定有两个公共点.
(2)①∵对称轴为直线x=-=,
∴m=2,
∴抛物线的函数表达式为y=x2-5x+6.
②设抛物线沿y轴向上平移k个单位后,得到的抛物线与x轴只有一个公共点,则平移后抛物线的函数表达式为y=x2-5x+6+k.
∵抛物线y=x2-5x+6+k与x轴只有一个公共点,
∴Δ=52-4(6+k)=0,
∴k=,
∴把该抛物线沿y轴向上平移个单位后,得到的抛物线与x轴只有一个公共点.