总 课 题 两直线的平行与垂直 总课时 第23课时
分 课 题 两条直线平行 分课时 第 1 课时
教学目标 掌握用斜率判断两条直线平行的方法,感受用代数方法研究几何图形性质的思想,运用分类讨论、数形结合等数学思想培养学生思维的严谨性、辩证性.
重点难点 两直线平行的判断.
引入新课
1.解下列各题
(1)直线,在轴上的截距是它在轴上的截距的倍,则
______________
(2)已知点在经过两点的直线上,则的值是_____
2.(1)当两条不重合的直线的斜率都存在时,若它们相互平行,则它们的斜率______,
反之,若它们的斜率相等,那么它们互相___________,即//____________.
当两条直线的斜率都不存在时,那么它们都与轴_________,故.
3.练习:
分别判断下列直线与是否平行:
(1),;
(2),.
例题剖析
已知两直线,求证://.
求证:顺次连结所得的四边形是梯形.
例3 求过点,且与直线平行的直线的方程.
求与直线平行,且在两坐标轴上的截距之和为的直线的方程.
巩固练习
1.如果直线与直线平行,则____________________.
2.过点且与直线平行的直线方程是____________________________.
3.两直线和的位置关系是___________________.
4.已知直线与经过点与的直线平行,若直线在轴上的截距为,
则直线的方程是_____________________________.
5.已知,求证:四边形是梯形.
课堂小结
//或//斜率不存在且横截距不相等,即如果,那么一定有//,反之不一定成立.
课后训练
班级:高一( )班 姓名:____________
一 基础题
1.下列所给直线中,与直线平行的是( )
A. B.
C. D.
2.经过点,且平行于过两点和的直线的方程是____________.
3.将直线沿轴负方向平移个单位,则所得的直线方程为____________.
4.若直线与直线平行,则_________________.
二 提高题
5.已知直线与与直线:平行,且在两坐标轴上的截距之和为,
求直线的方程.
6.当为何值时,直线和直线平行.
三 能力题
7.(1)已知直线:,且直线//,
求证:直线的方程总可以写成;
(2)直线和的方程分别是和,其中,
不全为,也不全为,试探求:当//时,直线方程中的系数应满足什么关系?
8.已知平行于直线的直线与两坐标轴围成的三角形的面积为,
求直线的方程.
.精品资料。欢迎使用。 ( http: / / www.21cnjy.com / " \o "欢迎登陆21世纪教育网 )
例1
A
B
C
D
-4
2
5
3
-3
例2
例4