湖北省武汉市部分学校2022届高三上学期起点质量检测数学试题(扫描版含答案)

文档属性

名称 湖北省武汉市部分学校2022届高三上学期起点质量检测数学试题(扫描版含答案)
格式 zip
文件大小 4.4MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2021-09-08 12:13:38

文档简介

2021~202学年度
4.某圆柱体的底面白径和高均与某球体的直径相等,则该圆柱体表面积与球体表面积
武汉市部分学校高三起点质量检测
数学试卷
中,随机事件A,B满足P(A)
A.事件A
H.事件A,B一定不互斥
本试题卷共5页,22题全卷满分150分。考试用时120分钟
6耍得到函数y=n(2x+)的图象,可以将函数y=c(2x-5)的图象
★祝考试顺利★
注意事项
单位长度
B.向左平移,个单位长度
答題前,先将自己的姓名、准考讧号填写在试卷和答题卡上,开将准考证号条形
C.向右平移个单位长度
向左平移个单位长度
粘贴在答题卡上的指定位置
选择题的作答:每小题选出答策后,用2B铅笔把答题卡上对应题目的答策标号涂
7.在用计算机处理灰度图像(即俗称的黑白照片)时,将灰度分为256个等级,最暗的懸色
黑。写在试卷、草稿纸和答题卡上的非答题区城均无效
用0表示,最亮的白色用255表小,中间的灰度根据其明暗淅变程度用0至255之间对
3.非选译題的作答;用黑色签字笔直接答在答題卡上对应的答题区域内。写在试卷
应的数表小,这样可以给图像上的每个像素赋予一个“灰度值”在处理有些较黑的图
草稿紙和答题卡上的非答題区城均无效
像时,为了增强较黑部分的对比度,可对图像上每个像素的灰度值进行转换,扩展低灰
4.考试結束后,请将本试卷和答题卡一并上交
度级,压缩高灰度级,实现如下图所示的效果
选择题:本题共8小题每小题5分,共40分。在每小题给出的四个选项中,只有一项
1.若复数z的共轭复数z满足(1+i)z=i,则
则下列可以实现该功能的一种函数图象是
B
新灰度怕
新灰度值
3在平面直角坐标系中,某
组对边所在的直线方程分别为x+2
另一组对边所在的直线方程分别为3x-4y+c1=0和3x-4y+c2=0,
乐灰度
熙灰度忙
原度正
B.2
数学试卷第1页(共5页)
数学试卷第2页(共5页)
2.已知函数f(x)
在平而凸四边形ABCD
BAD=30°,∠ABC=1.35°,4D=6,BD
A.当k=0时,f(x)是R上的减两数
H.当k=1时
的最大值为
求CD长
Cf(x)可能有两个极值点
D.若存在实a,b,使得g(x)=f(x+a)+b为奇函数,则k=-1
填空题:本题共4小题每小题5分,共20分。
在某班学牛举办的祝建党百周年活动屮,指定4名同学依次在分别写有“建
抛物线y2=2x上两点A,B与坐标原点O构成等边三角形,则该三角形的边长
随机拍政一张并记录结果

2)用x表示结果中这吗个字各出现次数中的坛大值.求EX
15平行四边形ABC中,·功=5,点P满足P
16.空间凹面体ABCB中,AB=CD=2,AD=B=23,AC=4,直线BD与AC所成的角
为45°,则该四面体的体积为
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤
)当&=0时,求曲线y=f(x)在点(1,f1)处的切线方程
2)若f(x)≥0恒成v,求实数a的取值范围
数列a,的前n项和为S,满足S=1-man(n∈N”)
(2)设数列:-1)的前n项和为r,求X1的表达式
已知椭回E
0)的离心率为
椭园E短轴的·个四
2)设过点A且斜率为h的动直线与椭圆E交于M,N两点,几点B(0,2),直线
)设H为CF中点,证明:BH∥平面ADEF
实数A使得k2=hk恒成立
2)求一面角-CF-E大小的正弦值
数学试卷第4页{共5页
数学试卷第5页(共5页21~2022学年度武汉市部分学校高三起点质量检测
数学试卷参考答案及评分标准
选择题
题号
答案
B
两式相减得
(n+1)
满足上

bn=4(
4n=4
数列
为等差数

1)延长CB
A的延长线于点C
为GC中点
为FC

为坐标原点
的方向为x,y,z轴的正方向,建立如图所示的
角坐标

(x,y1,z1),BC=(-1,1,0),CF=(1,-2,1)
设平面EFC的法
CE=(0,-2,1)
大小的正弦值
∠ABC
A
不符合题
cos∠DBA
C=cos(∠ABC
在三角形BCD
C+BD2-2BC·B
DBC
8+25
(1)设“结果中有‘建


的取
3)

6
256
68
f(x)=2(x-2)
),f(1)
曲线y=f(x)在点(1,f(1)处的切线方程为:y=f(1)(x
(1)
令h(x)=2(
1(x)=2(Inx
Xtx
令t(x)=h(x),t'(x)=2(
h'(x)在(0,+∞)上单调递增
0
(x)<0
)单调递减;x
(x)>0,h(x)单调递增
)=0,此时f(x)≥h(x
满足条

1)由题意
得b
椭圆半焦
解得a2=8
椭圆的标准方程为
,Q(xa,yo),直线MN方程
方法
BM方程
(y1-2)x


6
P(
4
6
)-(4
2
6
代入上式
k


联立得:(2k1+1)x2-4
3)k
设直线PQ方程为y=k2x+t,与x2+(y-1)2=1联立得:(k2
2k,、2k(t-2)t
k2(t-2t-1)+(k2+1)(
k
4
同课章节目录