2020-2021学年八年级数学青岛版下册《6.3特殊平行四边形—正方形》同步提升训练(word版、含解析)

文档属性

名称 2020-2021学年八年级数学青岛版下册《6.3特殊平行四边形—正方形》同步提升训练(word版、含解析)
格式 doc
文件大小 441.9KB
资源类型 教案
版本资源 青岛版
科目 数学
更新时间 2021-09-11 21:08:30

图片预览

文档简介

青岛版2021年度八年级数学下册《6.3特殊平行四边形—正方形》同步提升训练(附答案)
一、选择题
1.如图,在正方形ABCD中,AB=2,P是AD边上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为(  )
A.4
B.2
C.
D.2
2.如图,正方形ABCD中,点E是对角线AC上的一点,且AE=AB,连接BE,DE,则∠CDE的度数为(  )
A.20°
B.22.5°
C.25°
D.30°
3.如图,在正方形ABCD所在平面内求一点P,使点P与正方形ABCD的任意两个顶点构成△PAB,△PBC,△PAD,△PCD均是等腰三角形,则满足上述条件的所有点P的个数为(  )
A.8个
B.9个
C.10个
D.11个
4.将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A的边长为4,正方形C的边长为3,则正方形B的面积为(  )
A.25
B.5
C.16
D.12
5.正方形ABCD的一条对角线长为2,则正方形ABCD的周长为(  )
A.4
B.8
C.2
D.4
6.如图,在平面直角坐标系xOy,四边形OABC为正方形,若点B(1,3),则点C的坐标为(  )
A.(﹣1,2)
B.(﹣1,)
C.(﹣,2)
D.(﹣1,)
7.如图,正方形ABCD中,在BA延长线上取一点,使BE=BD,连接DE,则∠EDA的度数为(  )
A.10°
B.15°
C.30°
D.22.5°
8.如图,正方形ABCD的对角线AC,BD交于点O,P为边BC上一点,且BP=OB,则∠COP的度数为(  )
A.15°
B.22.5°
C.25°
D.17.5°
9.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列四个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP.其中正确结论个数是(  )
A.1
B.2
C.3
D.4
10.如图,在正方形OABC中,点B的坐标是(6,6),点E、F分别在边BC、BA上,OE=3.若∠EOF=45°,则F点的纵坐标是(  )
A.2
B.
C.
D.﹣1
二、填空题
11.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是 
 .
12.如图,四边形ABCD是正方形,AE⊥BE于点E,且AE=5,BE=12,则阴影部分的面积是 
 .
13.如图,在平面直角坐标系中,点A从点M(0,5)出发向原点O匀速运动,与此同时点B从点N(3,0)出发,在x轴正半轴上以相同的速度向右运动,当点A到达终点O时,两点同时停止运动.连接AB,以线段AB为一边在第一象限内作正方形ABCD,则正方形ABCD面积的最小值为 
 .
14.如图,四边形ABCD是正方形,按如下步骤操作:①分别以点A,D为圆心,以AD长为半径画弧,两弧交于点P,连接AP,DP;②连接BP,CP,则∠BPC= 
 .
15.如图,在边长为6的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为 
 .
16.如图,平面内直线l1∥l2∥l3∥l4,且相邻两条平行线间隔均为1,正方形ABCD四个顶点分别在四条平行线上,则正方形的面积为 
 .
17.如图,两个正方形边长分别为2、a(a>2),图中阴影部分的面积为 
 .
18.如图,在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(﹣4,0),以AB为边作正方形ABCD,连接OD,DB.则△DOB的面积是 
 .
19.如图,四边形ABCD是一个正方形,E是BC延长线上的一点,且AC=EC,则∠DAE= 
 .
20.已知正方形ABCD的边长为2,EF分别是边BC,CD上的两个动点,且满足BE=CF,连接AE,AF,则AE+AF的最小值为 
 .
三、解答题
21.如图,在矩形ABCD中,∠BAD的平分线交BC于点E,EF⊥AD于点F,DG⊥AE于点G,DG与EF交于点O.
(1)求证:四边形ABEF是正方形;
(2)若AD=AE,求证:AB=AG;
(3)在(2)的条件下,已知AB=1,求OD的长.
22.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
(1)求证:矩形DEFG是正方形;
(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.
23.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.
(1)求证:矩形DEFG是正方形;
(2)求AG+AE的值;
(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.
24.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为F,G,若正方形ABCD的周长是40cm.
(1)求证:四边形BFEG是矩形;
(2)求四边形EFBG的周长;
(3)当AF的长为多少时,四边形BFEG是正方形?
25.如图①,在正方形ABCD中,点E,F分别在AB、BC上,且AE=BF.
(1)试探索线段AF、DE的数量关系,写出你的结论并说明理由;
(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图②中补全图形,并说明理由.
26.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.
(1)求证:四边形ABCD是正方形.
(2)已知AB的长为6,求(BE+6)(DF+6)的值.
(3)借助于上面问题的解题思路,解决下列问题:若三角形PQR中,∠QPR=45°,一条高是PH,长度为6,QH=2,则HR= 
 .
27.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.
(1)求证:四边形ABCD是正方形.
(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.
28.如图,在平面直角坐标系中,正方形ABCD的顶点C、A分别在x、y轴上,A(0,6),E(0,2),点H、F分别在边AB、OC上,以H、E、F为顶点作菱形EFGH.
(1)当H(﹣2,6)时,求证:四边形EFGH是正方形;
(2)若F(﹣5,0),求点G的坐标.
参考答案
1.解:在正方形ABCD中,OA⊥OB,∠OAD=45°,
∵PE⊥AC,PF⊥BD,
∴四边形OEPF为矩形,△AEP是等腰直角三角形,
∴PF=OE,PE=AE,
∴PE+PF=AE+OE=OA,
∵正方形ABCD的边长为2,
∴OA=AC==.
故选:C.
2.解:∵四边形ABCD是正方形,
∴AB=AD,∠ADC=90°,∠DAC=45°,
∵AE=AB,
∴AD=AE,
∴∠ADE=∠AED=67.5°,
∴∠CDE=90°﹣67.5°=22.5°,
故选:B.
3.解:分为三种情况:①正方形对角线的交点P1;
②作AD边的垂直平分线MN,以点D为圆心,以DC为半径画弧,交MN于点P2和P3;
以点C为圆心,以DC为半径画弧,交MN于点P4和P5,如图:
③同理,作AB边的垂直平分线,分别以点A和点B为圆心,AD为半径画弧,与该垂直平分线也有4个交点.
综上,符合题意的所有点P的个数为:1+4+4=9(个).
故选:B.
4.解:如图,
∵根据正方形的性质得:DF=FG,∠DEF=∠GHF=∠DFG=90°,
∴∠EDF+∠DFE=90°,∠DFE+∠GFH=90°,
∴∠EDF=∠GFH,
在△DEF和△FHG中,

∴△DEF≌△FHG(AAS),
∴DE=FH=4,
∵GH=3,
在Rt△GHF中,由勾股定理得:FG2=32+42=25,
则正方形B的面积为25.故选:A.
5.解:因为正方形ABCD的一条对角线长为2,
设正方形的边长为a,
根据勾股定理,得a2+a2=22,
解得a=,
所以正方形的边长为,
则正方形ABCD的周长为4.
故选:D.
6.解:作CD⊥x轴于D,作BE⊥CD于E,交y轴于F,如图,
∵B(1,3),
∴DE=3,BF=1,
设C(m,n),则OD=EF=﹣m,CD=n,
∵四边形ABCO为正方形,
∴∠BCO=90°,CB=CO,
∵∠BCE+∠OCD=90°,∠BCE+∠CBE=90°,
∴∠OCD=∠CBE,
在△OCD和△CBE中

∴△OCD≌△CBE(AAS),
∴CD=BE,OD=CE,
即n=1﹣m,﹣m=3﹣n,
∴m=﹣1,n=2,
∴C点坐标为(﹣1,2).故选:A.
7.解:∵四边形ABCD是正方形,
∴∠ABD=45°=∠ADB,
∵BE=BD,
∴∠BDE=67.5°,
∴∠EDA=∠BDE﹣∠ADB=22.5°,
故选:D.
8.解:∵四边形ABCD是正方形,
∴∠BOC=90°,∠OBC=45°,
∵BP=OB,
∴∠BOP=∠BPO=(180°﹣45°)=67.5°,
∴∠COP=90°﹣67.5°=22.5°.
故选:B.
9.解:如图,连接PC,延长AP交EF于H,延长FP交AB于G,
在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,
∵在△ABP和△CBP中,

∴△ABP≌△CBP(SAS),
∴AP=PC,∠BAP=∠BCP,
又∵PE⊥BC,PF⊥CD,
∴四边形PECF是矩形,
∴PC=EF,∠BCP=∠PFE,
∴AP=EF,∠PFE=∠BAP,故①④正确;
只有点P为BD的中点或PD=AD时,△APD是等腰三角形,故③错误;
∵PF∥BC,
∴∠AGF=∠ABC=90°,
∵∠BAP=∠PFE,∠APG=∠FPH,
∴∠AGP=∠AHF=90°,
∴AP⊥EF,故②正确,故选:C.
10.解:如图,连接EF,延长BA,使得AM=CE,
在△OCE和△OAM中,

∴△OCE≌△OAM(SAS).
∴OE=OM,∠COE=∠MOA,
∵∠EOF=45°,
∴∠COE+∠AOF=45°,
∴∠MOA+∠AOF=45°,
∴∠EOF=∠MOF,
在△OFE和△OFM中,

∴△OFE≌△FOM(SAS),
∴EF=FM=AF+AM=AF+CE,
设AF=x,
∵CE===3,
∴EF=3+x,EB=3,FB=6﹣x,
∴(3+x)2=32+(6﹣x)2,
∴x=2,
∴点F的纵坐标为2,故选:A.
11.解:如图,过点D作DE⊥DP交BC的延长线于E,
∵∠ADC=∠ABC=90°,
∴四边形DPBE是矩形,
∵∠CDE+∠CDP=90°,∠ADC=90°,
∴∠ADP+∠CDP=90°,
∴∠ADP=∠CDE,
∵DP⊥AB,
∴∠APD=90°,
∴∠APD=∠E=90°,
在△ADP和△CDE中,

∴△ADP≌△CDE(AAS),
∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,
∴矩形DPBE是正方形,
∴DP==3.
故答案为:3.
12.解:在Rt△AEB中,∠AEB=90°,AE=5,BE=12,
由勾股定理得:AB==13,
∴正方形的面积是13×13=169,
∵△AEB的面积是AE×BE=×5×12=30,
∴阴影部分的面积是169﹣30=139,
故答案为:139.
13.解:由题意可得,NB=MA,则AO+OB=8,
设AO=x,则OB=8﹣x,
∵S正方形ABCD=AB2=AO2+OB2=x2+(8﹣x)2=2(x﹣4)2+32,
∴当x=4时,正方形ABCD的面积取得最小值32,
故答案为:32.
14.解:根据作图过程可知:
AD=AP=PD,
∴△ADP是等边三角形,
∴∠DAP=∠ADP=∠APD=60°,
∵四边形ABCD是正方形,
∴AB=AD=DC,∠BAD=∠ADC=∠ABC=∠BCD=90°,
∴AB=AP,DP=DC,
∴∠ABP=∠APB=∠DPC=∠DCP=75°,
∴∠BPC=360°﹣60°﹣75°﹣75°=150°.
故答案为:150°.
15.解:连接MC,如图所示:
∵四边形ABCD是正方形,
∴∠C=90°,∠DBC=45°,
∵ME⊥BC于E,MF⊥CD于F,
∴四边形MECF为矩形,
∴EF=MC,
当MC⊥BD时,MC取得最小值,
此时△BCM是等腰直角三角形,
∴MC=BC=×6=3,
∴EF的最小值为3;
故答案为:3.
16.解:过C点作EF⊥l2,交l1于E点,交l4于F点.
∵l1∥l2∥l3∥l4,EF⊥l2,
∴EF⊥l1,EF⊥l4,
即∠CED=∠BFC=90°.
∵ABCD为正方形,
∴∠BCD=90°.
∴∠DCE+∠BCF=90°.
又∵∠DCE+∠CDE=90°,
∴∠CDE=∠BCF.
在△CDE和△BCF中,
∴△CDE≌△BCF(AAS),
∴BF=CE=2.
∵CF=1,
∴BC2=12+22=5,
即正方形ABCD的面积为5.
故答案为:5.
17.解:阴影部分的面积=
18.解:过点D作DE⊥y轴,垂足为E.
∵A的坐标是(0,3),点B的坐标是(﹣4,0),
∴OA=3,OB=4.
∵ABCD为正方形,
∴AB=AD,∠DAB=90°.
∴∠DAE=∠AB0.
在△ABO和△DAE中,
∴△ABO≌△DAE.
∴AE=OB=4.
∴OE=AE+AO=4+3=7.
∴△OBD的面积=OB?OE=×4×7=14.
故答案为:14.
19.解:∵四边形ABCD是正方形,
∴∠ACB=45°,AD∥BC,
∵AC=EC,
∴∠E=∠CAE,
∵∠ACB=∠E+∠CAE=2∠E,
∴∠E=∠ACB=22.5°,
∵AD∥BC,
∴∠DAE=∠E=22.5°.
故答案为:22.5°.
20.解:连接DE,作点A关于BC的对称点A′,连接BA′、EA′,
∵四边形ABCD为正方形,
∴AD=CD=BC,∠ADC=∠BCD=90°,
∵BE=CF,
∴DF=CE,
在△DCE与△ADF中,

∴△DCE≌△ADF(SAS),
∴DE=AF,
∴AE+AF=AE+DE,
作点A关于BC的对称点A′,连接BA′、EA′,
则AE=A′E,
即AE+AF=AE+DE=A'E+DE,
当D、E、A′在同一直线时,AE+AF最小,
AA′=2AB=4,
此时,在Rt△ADA′中,DA′==2,
故AE+AF的最小值为2.
故答案为:2.
21.(1)证明:∵矩形ABCD,
∴∠BAF=∠ABE=90°,
∵EF⊥AD,
∴四边形ABEF是矩形,
∵AE平分∠BAD,
∴EF=EB,
∴四边形ABEF是正方形;
(2)∵AE平分∠BAD,
∴∠DAG=∠BAE,
在△AGD和△ABE中,,
∴△AGD≌△ABE(AAS),
∴AB=AG;
(3)∵四边形ABEF是正方形,
∴AB=AF=1,
∵△AGD≌△ABE,
∴DG=AB=AF=AG=1,
∵AD=AE,
∴AD﹣AF=AE﹣AG,
即DF=EG,
在△DFO和△EGO中,,
∴△DFO≌△EGO(AAS),
∴FO=GO,FD=EG
∵∠DAE=∠AEF=45°,∠AFE=∠AGD=90°,
∴DF=FO=OG=EG,
∴DO=OF=OG,
∴DG=DO+OG=OG+OG=1,
∴OG==﹣1,
∴OD=(﹣1)=2﹣.
22.解:(1)如图,作EM⊥BC于M,EN⊥CD于N,
∴∠MEN=90°,
∵点E是正方形ABCD对角线上的点,
∴EM=EN,
∵∠DEF=90°,
∴∠DEN=∠MEF,
∵∠DNE=∠FME=90°,
在△DEN和△FEM中,

∴△DEN≌△FEM(ASA),
∴EF=DE,
∵四边形DEFG是矩形,
∴矩形DEFG是正方形;
(2)CE+CG的值是定值,定值为6,理由如下:
∵正方形DEFG和正方形ABCD,
∴DE=DG,AD=DC,
∵∠CDG+∠CDE=∠ADE+∠CDE=90°,
∴∠CDG=∠ADE,
在∴△ADE和△CDG中,,
∴△ADE≌△CDG(SAS),
∴AE=CG,
∴CE+CG=CE+AE=AC=AB=×3=6是定值.
23.解:(1)如图,作EM⊥AD于M,EN⊥AB于N.
∵四边形ABCD是正方形,
∴∠EAD=∠EAB,
∵EM⊥AD于M,EN⊥AB于N,
∴EM=EN,
∵∠EMA=∠ENA=∠DAB=90°,
∴四边形ANEM是矩形,
∵EF⊥DE,
∴∠MEN=∠DEF=90°,
∴∠DEM=∠FEN,
∵∠EMD=∠ENF=90°,
∴△EMD≌△ENF,
∴ED=EF,
∵四边形DEFG是矩形,
∴四边形DEFG是正方形.
(2)∵四边形DEFG是正方形,四边形ABCD是正方形,
∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,
∴∠ADG=∠CDE,
∴△ADG≌△CDE(SAS),
∴AG=CE,
∴AE+AG=AE+EC=AC=AD=4.
(3)如图,作EH⊥DF于H.
∵四边形ABCD是正方形,
∴AB=AD=4,AB∥CD,
∵F是AB中点,
∴AF=FB
∴DF==2,
∵△DEF是等腰直角三角形,EH⊥AD,
∴DH=HF,
∴EH=DF=,
∵AF∥CD,
∴AF:CD=FM:MD=1:2,
∴FM=,
∴HM=HF﹣FM=,
在Rt△EHM中,EM==.
24.解:(1)证明:∵四边形ABCD为正方形,
∴AB⊥BC,∠B=90°.
∵EF⊥AB,EG⊥BC,
∴EF∥GB,EG∥BF.
∵∠B=90°,
∴四边形BFEG是矩形;
(2)∵正方形ABCD的周长是40cm,
∴AB=40÷4=10cm.
∵四边形ABCD为正方形,
∴△AEF为等腰直角三角形,
∴AF=EF,
∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.
(3)若要四边形BFEG是正方形,只需EF=BF,
∵AF=EF,AB=10cm,
∴当AF=5cm时,四边形BFEG是正方形.
25.解:(1)AF=DE.
∵ABCD是正方形,
∴AB=AD,∠DAB=∠ABC=90°,
∵AE=BF,
∴△DAE≌△ABF,
∴AF=DE.
(2)四边形HIJK是正方形.
如下图,H、I、J、K分别是AE、EF、FD、DA的中点,
∴HI=KJ=AF,HK=IJ=ED,
∵AF=DE,
∴HI=KJ=HK=IJ,
∴四边形HIJK是菱形,
∵△DAE≌△ABF,
∴∠ADE=∠BAF,
∵∠ADE+∠AED=90°,
∴∠BAF+∠AED=90°,
∴∠AOE=90°
∴∠KHI=90°,
∴四边形HIJK是正方形.
26.(1)证明:作AG⊥EF于G,如图1所示:
则∠AGE=∠AGF=90°,
∵AB⊥CE,AD⊥CF,
∴∠B=∠D=90°=∠C,
∴四边形ABCD是矩形,
∵∠CEF,∠CFE外角平分线交于点A,
∴AB=AG,AD=AG,
∴AB=AD,
∴四边形ABCD是正方形;
(2)解:∵四边形ABCD是正方形,
∴BC=CD=6,
在Rt△ABE和Rt△AGE中,,
∴Rt△ABE≌Rt△AGE(HL),
∴BE=BG,
同理:Rt△ADF≌Rt△AGF(HL),
∴DF=GF,∴BE+DF=GE+GF=EF,
设BE=x,DF=y,则CE=BC﹣BE=6﹣x,CF=CD﹣DF=6﹣y,EF=x+y,
在Rt△CEF中,由勾股定理得:(6﹣x)2+(6﹣y)2=(x+y)2,
整理得:xy+6(x+y)=36,
∴(BE+6)(DF+6)=(x+6)(y+6)=xy+6(x+y)+36=36+36=72;
(3)解:如图2所示:
把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,
由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,
∴MG=DG=MP=PH=6,
∴GQ=4,
设MR=HR=a,则GR=6﹣a,QR=a+2,
在Rt△GQR中,由勾股定理得:(6﹣a)2+42=(2+a)2,
解得:a=3,即HR=3;
故答案为:3.
27.(1)证明:∵四边形ABCD是菱形,
∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,
∴∠BAD+∠ABC=180°,
∵∠CAD=∠DBC,
∴∠BAD=∠ABC,
∴2∠BAD=180°,∴∠BAD=90°,
∴四边形ABCD是正方形;
(2)证明:∵四边形ABCD是正方形,
∴AC⊥BD,AC=BD,CO=AC,DO=BD,
∴∠COB=∠DOC=90°,CO=DO,
∵DH⊥CE,垂足为H,
∴∠DHE=90°,∠EDH+∠DEH=90°,
∵∠ECO+∠DEH=90°,
∴∠ECO=∠EDH,
在△ECO和△FDO中,,
∴△ECO≌△FDO(ASA),
∴OE=OF.
28.解:(1)∵四边形ABCD是正方形,
∴∠BAO=∠AOC=90°,
∵E(0,2),H(﹣2,6),
∴AH=OE=2,
∵四边形EFGH是菱形,
∴EH=EF,
在Rt△AHE和Rt△OEF中,

∴Rt△AHE≌Rt△OEF,
∴∠AEH=∠EFO,
∵∠EFO+∠FEO=90°,
∴∠AEH+∠FEO=90°,
∴∠HEF=90°,∵四边形EFGH是菱形,
∴四边形EFGH是正方形.
(2)连接EG交FH于K.
∵HE=EF,
∴AH2+AE2=EO2+OF2,
∴AH2+16=4+25,
∴AH=,
∴H(﹣,6),
∵KH=KF,
∴K(﹣,3),
∵GK=KE,
∴G(﹣5﹣,4).