2021-2022学年七年级数学湘教版上册1.4.1有理数的加法 同步练习(word版、含解析)

文档属性

名称 2021-2022学年七年级数学湘教版上册1.4.1有理数的加法 同步练习(word版、含解析)
格式 docx
文件大小 292.0KB
资源类型 教案
版本资源 湘教版
科目 数学
更新时间 2021-09-11 21:44:37

图片预览

文档简介

1.4.1有理数的加法
一、单选题
1.下列各式中正确的是(  )
A.(﹣4)+(﹣3)=7
B.(-3)+4=(-1)
C.10+(﹣7)=﹣3
D.﹣5+4=﹣1
2.在有理数1,0,,-2中,任意取两个数相加,最小的和是(

A.
B.
C.
D.
3.如图的正方形方格中共有9个空格,小林同学想在每个空格中分别填入1、2、3三个数字中的一个,使得处于同一横行、同一竖列、同一对角线上的3个数字之和均不相等,你认为小林的设想能实现吗?(

A.一定可以
B.一定不可以
C.有可能
D.无法判断
4.如图,在数轴上,点A、B、C对应的数分贝为a、b、c,若以下三个式子:①|b|=|c|;②a+c<0;③a+b<0;都成立,则原点在(

A.点A的左侧
B.点A和点B之间
C.点B和点C之间
D.点C的左侧
5.若,,且,则一定是(

A.负数
B.正数
C.0
D.无法确定符号
6.一辆巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,若规定向东行驶为正,向西行驶为负,行驶纪录如下表(单位:千米),则巡逻车在巡逻过程中,离开A地最远是(  )千米.
第一次
第二次
第三次
第四次
第五次
第六次
第七次
+10
﹣2
+5
+12
﹣3
+2
﹣10
A.44
B.14
C.25
D.都不对
7.若a,b是有理数,,则(

A.1或-7
B.-1或-7
C.1或7
D.1,7,-1或-7
8.若是绝对值最小的数,是相反数等于它本身的数,是最大的负整数,则的值为(

A.
B.
C.
D.
9.下列说法正确的是(

A.两数之和大于每个加数
B.两数之和为正,两加数必为异号
C.两数之和为正,则两数均为正
D.两数之和为零,则两数必互为相反数
10.如图,数轴上,,,,五个点表示连续的五个整数,,,,,且.则下列结论:①点表示的数字是0;②;③;④.其中正确的是(

A.①②
B.①②③
C.①②④
D.①②③④
二、填空题
11.绝对值小于3.6的所有负整数的和为________.
12.若诸暨某天早晨的温度是?3℃,到中午气温升高了7℃,那么中午的温度是_________℃.
13.已知:,,且,则________.
14.小明在写作业时不慎将墨水滴在数轴上,根据图中数值,可以确定墨迹盖住的整数和是____.
15.把写成省略括号的和形式__________________.
三、解答题
16.计算:
(1)
(2)
(3)
(4)
17.分别在如图所示的圆圈中填上彼此不相等的数,使得每条线上的数字之和等于0,
18.如果,且,求的值.
19.请根据图示的对话,解答下列问题.
(1)分别求出的值;
(2)求的值
20.张强到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为-1.张强从1楼出发,电梯上下楼层依次记录如下(单位:层):+4,-3,+10,-8,+12,-6,-7.
(1)请你通过计算说明张强最后停在几楼;
(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电a度.根据张强现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?
参考答案
1.D
解:A、(-4)+(-3)=-7,故错误;
B、(-3)+4=1,故错误;
C、10+(-7)=3,故错误;
D、-5+4=-1,故正确;
故选D.
2.D
解:1>0>
?1
>-2
(-1)+(-2)=-3.
故选:D.
3.B
解:在每个空格中分别填入1、2、3三个数字中的一个,和有3~9,共有7种情况,
而同一横行、同一竖列、同一对角线上的3个数字之和有8个,
7<8.
故小林的设想一定不可以实现.
故选:B.
4.C
解:由数轴可得,
,,
∵,
∴,且,
∵,,
∴,
∴原点位于点B和点C之间;
故答案选C.
5.B
解:∵,,,
∴(异号两数相加,取绝对值大的符号).
故选:B.
6.C
解:第一次离A地的距离为:+10米;
第二次离A地的距离为:+10-2=+8米;
第三次离A地的距离为:+8+5=+13米;
第四次离A地的距离为:+13+12=+25米;
第五次离A地的距离为:+25-3=+22米;
第六次离A地的距离为:+22+2=+24米;
第七次离A地的距离为:+24-10=+14米;
所以离开A第最远的是25米;
故选C.
7.C
解:由可得:,
∴或,
∴1或7;
故选C.
8.C
解:∵是绝对值最小的数,是相反数等于它本身的数,是最大的负整数,
∴,
∴.
故选:C.
9.D
解:A.若两个加数是-3和4,则-3+4=1,1<4,故A错误;
B.若两个加数为2和3,则2+3=5,2和3同号,故B错误;
C.若两个加数为-1和4,则-1+4=3,加数-1是负数,故C错误;
D.两个数之和为零,则这两数互为相反数,故D正确,
故选:D.
10.C
解:∵a,b,c,d,e表示连续的五个整数,且a+e=0,
∴C为原点,
∴a=-2,b=-1,c=0,d=1,e=2,
∴,
于是①②④正确,而③不正确,
故选:C.
11.-6
解:∵绝对值小于3.6的所有负整数为-1、-2、-3,
∴绝对值小于3.6的所有负整数的和为和为(-1)+(-2)
+(-3)=-6,
故答案为:-6.
12.4
解:;
故答案为:4.
13..
解:,,且,
,,

故答案为:.
14.-14
解:由题意得:墨迹盖住的整数是:﹣6,﹣5,﹣4,﹣3,﹣2,1,2,3;
它们的和为:﹣6+(﹣5)+(﹣4)+(﹣3)+(﹣2)+1+2+3=﹣14.
故答案为:﹣14.
15.﹣5﹣3﹣2+1
解:=﹣5﹣3﹣2+1,
故答案为:﹣5﹣3﹣2+1.
16.(1)-19;(2);(3);(4).
解:(1)(-6)+(-13)
=-(6+13).
=-19;
(2)
=
=
=;
(3)
=
=;
(4)
=
=
=
=.
17.见解析(答案不唯一)
解:答案不唯一,如:



18.或
解:,

又,


或,
当时,,
当时,;
故,综上可得的值为或.
19.(1);(2)9
解:(1)因为a的相反数是3,所以a=-3.
因为b<4,且b的绝对值是5,所以b=-5.
因为c与b的和是-7,即.
把b=-5代入,得.
解得,.
所以,.
(2)当时.
20.(1)2楼;(2)度.
解:(1)
答:张强最后停在2楼
(2)(度)
答:他办事时电梯需要耗电度.